Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture.

Plast Reconstr Surg

Meyzieu and Lyon, France; and Basel, Switzerland From CTI-BIOTECH, Cell Therapy Research Institute; the Department of Biomedicine, University and University Hospital of Basel; Craniomaxillofacial Surgery, University Hospital Basel; Novotec; and the Faculty of Pharmacy, University Claude Bernard Lyon.

Published: July 2014

Background: Cleft lip and cleft palate are increasingly being detected by prenatal ultrasound, which raises the opportunity of using the patient's own osteogenicity from umbilical cord mesenchymal cells for bony repair. The authors address the growth of the cells under a fully defined and regulated protocol.

Methods: Wharton jelly-derived mesenchymal stromal cells were isolated and expanded as a monolayer with defined serum-free medium. Osteoblastic differentiation was tested in the cells and in the entire Wharton jelly biopsy specimens. The serum-free-cultured cells were included in hydroxyapatite granule-fibrin constructs and, without predifferentiation, subcutaneously implanted into immunoincompetent mice.

Results: Isolation and expansion of Wharton jelly-derived mesenchymal stromal cells were consistently successful under serum-free conditions, and the cells expressed standard mesenchymal stromal cell markers. The serum-free-cultivated cells produced a mineralized extracellular matrix under osteogenic differentiation, with a significant increase of osteoblastic lineage gene expression (Hox-A10 and Runx2) and an up-regulation of downstream osteogenic genes (OSX, OCN, ALPL, and BSP2). In vivo, they formed a dense matrix adjacent to the granules after 8 weeks, but no lamellar bone. serum-free-cultivated entire Wharton jelly biopsy specimens produced a mineralized extracellular matrix within the collagen matrix of the Wharton jelly.

Conclusions: The osteogenic differentiation potential of Wharton jelly-derived mesenchymal stromal cells was maintained under serum-free isolation and expansion techniques. The cells without predifferentiation form a dense collagen matrix but not bone in vivo. Moreover, entire Wharton jelly biopsy specimens showed periosteal-like mineralization under osteogenic differentiation, which offers new options for autologous bone tissue engineering, including cleft palate surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000000305DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
20
wharton jelly
16
jelly biopsy
16
biopsy specimens
16
stromal cells
16
wharton jelly-derived
12
jelly-derived mesenchymal
12
entire wharton
12
osteogenic differentiation
12
cells
11

Similar Publications

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.

View Article and Find Full Text PDF

Background: The use of fat grafting has expanded to include cell and tissue regeneration, necessitating investigations to ensure the viability of stromal and adipose-derived mesenchymal stem cells (ASCs) within the transferred fat parcels. This study explored the impact of harvesting technique and centrifugation on the viability of stromal cells and ASCs in lipoaspirate.

Methods: Fat was harvested from patients undergoing fat grafting using 2 types of liposuction cannula: (A) a 3-mm blunt tip cannula with 3 smooth holes and (B) a 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!