Geometric analysis of alloreactive HLA α-helices.

Biomed Res Int

Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.

Published: March 2015

Molecular dynamics (MD) is a valuable tool for the investigation of functional elements in biomolecules, providing information on dynamic properties and processes. Previous work by our group has characterized static geometric properties of the two MHC α-helices comprising the peptide binding region recognized by T cells. We build upon this work and used several spline models to approximate the overall shape of MHC α-helices. We applied this technique to a series of MD simulations of alloreactive MHC molecules that allowed us to capture the dynamics of MHC α-helices' steric configurations. Here, we discuss the variability of spline models underlying the geometric analysis with varying polynomial degrees of the splines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083606PMC
http://dx.doi.org/10.1155/2014/943186DOI Listing

Publication Analysis

Top Keywords

geometric analysis
8
mhc α-helices
8
spline models
8
analysis alloreactive
4
alloreactive hla
4
hla α-helices
4
α-helices molecular
4
molecular dynamics
4
dynamics valuable
4
valuable tool
4

Similar Publications

Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.

View Article and Find Full Text PDF

Amplification of Secondary Flow at the Initiation Site of Intracranial Sidewall Aneurysms.

Cardiovasc Eng Technol

January 2025

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.

Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.

View Article and Find Full Text PDF

Optimal frequency bands for pupillography for maximal correlation with HRV.

Sci Rep

January 2025

Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.

Assessing cognitive load using pupillography frequency features presents a persistent challenge due to the lack of consensus on optimal frequency limits. This study aims to address this challenge by exploring pupillography frequency bands and seeking clarity in defining the most effective ranges for cognitive load assessment. From a controlled experiment involving 21 programmers performing software bug inspection, our study pinpoints the optimal low-frequency (0.

View Article and Find Full Text PDF

An efficient heuristic for geometric analysis of cell deformations.

Comput Biol Med

January 2025

SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:

Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.

View Article and Find Full Text PDF

We analyzed the intrinsic strength of distal and proximal FeN bonds and the stiffness of the axial NFeN bond angle in a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans. Ferric and ferrous oxidation states were considered. As assess- ment tool, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from our local mode theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!