Functional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where "*" indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼ 5-8-fold) or WT mα6mβ4mβ3-nAChRs (∼ 2-fold) yielded higher function than mα6mβ4-nAChRs. Function was not detected when mα6 and mβ2 subunits were expressed together or in the additional presence of hβ3 or mβ3 subunits. However, function emerged upon expression of mα6mβ2mβ3(V9'S)-nAChRs containing β3 subunits having gain-of-function V9'S (valine to serine at the 9'-position) mutations in transmembrane domain II and was further elevated 9-fold when hβ3(V9'S) subunits were substituted for mβ3(V9'S) subunits. Studies involving WT or gain-of-function chimeric mouse/human β3 subunits narrowed the search for domains that influence functional expression of mα6*-nAChRs. Using hβ3 subunits as templates for site-directed mutagenesis studies, substitution with mβ3 subunit residues in extracellular N-terminal domain loops "C" (Glu(221) and Phe(223)), "E" (Ser(144) and Ser(148)), and "β2-β3" (Gln(94) and Glu(101)) increased function of mα6mβ2*- (∼ 2-3-fold) or mα6mβ4* (∼ 2-4-fold)-nAChRs. EC50 values for nicotine acting at mα6mβ4*-nAChR were unaffected by β3 subunit residue substitutions in loop C or E. Thus, amino acid residues located in primary (loop C) or complementary (loops β2-β3 and E) interfaces of β3 subunits are some of the molecular impediments for functional expression of mα6mβ2β3- or mα6mβ4β3-nAChRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192487 | PMC |
http://dx.doi.org/10.1074/jbc.M114.566018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!