Howardite-eucrite-diogenite meteorites (HEDs) probably originated from the asteroid 4 Vesta. We investigated one eucrite, Béréba, to clarify a dynamic event that occurred on 4 Vesta using a shock-induced high-pressure polymorph. We discovered high-pressure polymorphs of silica, coesite, and stishovite originating from quartz and/or cristobalite in and around the shock-melt veins of Béréba. Lamellar stishovite formed in silica grains through a solid-state phase transition. A network-like rupture was formed and melting took place along the rupture in the silica grains. Nanosized granular coesite grains crystallized from the silica melt. Based on shock-induced high-pressure polymorphs, the estimated shock-pressure condition ranged from ∼8 to ∼13 GPa. Considering radiometric ages and shock features, the dynamic event that led to the formation of coesite and stishovite occurred ca. 4.1 Ga ago, which corresponds to the late heavy bombardment period (ca. 3.8-4.1 Ga), deduced from the lunar cataclysm. There are two giant impact basins around the south pole of 4 Vesta. Although the origin of HEDs is thought to be related to dynamic events that formed the basins ca. 1.0 Ga ago, our findings are at variance with that idea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121824PMC
http://dx.doi.org/10.1073/pnas.1404247111DOI Listing

Publication Analysis

Top Keywords

coesite stishovite
12
dynamic event
8
shock-induced high-pressure
8
high-pressure polymorphs
8
silica grains
8
discovery coesite
4
stishovite
4
stishovite eucrite
4
eucrite howardite-eucrite-diogenite
4
howardite-eucrite-diogenite meteorites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!