Erlotinib is a tyrosine kinase inhibitor approved for the treatment of patients with advanced non-small cell lung cancer (NSCLC). In these patients, erlotinib prolongs survival but its benefit remains modest because many tumors express wild-type (wt) EGFR or develop a second-site EGFR mutation. To test drug combinations that could improve the efficacy of erlotinib, we combined erlotinib with quinacrine, which inhibits the FACT (facilitates chromatin transcription) complex that is required for NF-κB transcriptional activity. In A549 (wtEGFR), H1975 (EGFR-L858R/T790M), and H1993 (MET amplification) NSCLC cells, this drug combination was highly synergistic, as quantified by Chou-Talalay combination indices, and slowed xenograft tumor growth. At a sub-IC50 but more clinically attainable concentration of erlotinib, quinacrine, alone or in combination with erlotinib, significantly inhibited colony formation and induced cell-cycle arrest and apoptosis. Quinacrine decreased the level of active FACT subunit SSRP1 and suppressed NF-κB-dependent luciferase activity. Knockdown of SSRP1 decreased cell growth and sensitized cells to erlotinib. Moreover, transcriptomic profiling showed that quinacrine or combination treatment significantly affected cell-cycle-related genes that contain binding sites for transcription factors that regulate SSRP1 target genes. As potential biomarkers of drug combination efficacy, we identified genes that were more strongly suppressed by the combination than by single treatment, and whose increased expression predicted poorer survival in patients with lung adenocarcinoma. This preclinical study shows that quinacrine overcomes erlotinib resistance by inhibiting FACT and cell-cycle progression, and supports a clinical trial testing erlotinib alone versus this combination in advanced NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156551PMC
http://dx.doi.org/10.1158/1535-7163.MCT-14-0013DOI Listing

Publication Analysis

Top Keywords

erlotinib
10
quinacrine overcomes
8
inhibiting fact
8
cell-cycle progression
8
non-small cell
8
cell lung
8
lung cancer
8
erlotinib quinacrine
8
drug combination
8
quinacrine combination
8

Similar Publications

Background: Several head-to-head meta-analyses have compared the efficacy and safety of different first-line treatments in patients with EGFR mutation-positive (M+) advanced or metastatic non-squamous non-small cell lung cancer (nsq-NSCLC). However, there is a lack of comprehensive evaluation encompassing multiple treatment strategies. Our objective is to conduct a network meta-analysis that includes various treatment modalities, enabling both direct and indirect comparisons for a more thorough assessment.

View Article and Find Full Text PDF

A 53-year-old woman undergoing combination therapy with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) inhibitors for advanced lung cancer with brain metastases developed pustules and punctate purpura on both lower extremities. Histopathological examination revealed neutrophilic infiltration around the hair follicles and erythrocyte extravasation in the perivascular regions near the hair roots, leading to a diagnosis of purpuric papulopustular eruptions. The rash improved with oral doxycycline (100 mg/day) and topical corticosteroids.

View Article and Find Full Text PDF

Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.

View Article and Find Full Text PDF

The primary objective of this study was to conduct a comprehensive analysis of the mechanism by which TCF7 recombinant protein operates, as well as to examine its expression patterns within bladder cancer cells. This research seeks to establish a new theoretical framework and provide experimental data that could advance the field of molecular targeted therapy for bladder cancer. Erlotinib, a well-known targeted therapy drug, was administered to the bladder cancer cells, and we evaluated its antitumor effects through various assays such as cell proliferation, apoptosis, and cell cycle analysis.

View Article and Find Full Text PDF

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!