Lack of paraoxonase 1 alters phospholipid composition, but not morphology and function of the mouse retina.

Invest Ophthalmol Vis Sci

Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland Zurich Center of Neuroscience (ZNZ), Zurich, Switzerland.

Published: July 2014

Purpose: Biochemical and genetic analyses established a contribution of lipid metabolism to AMD pathology. Paraoxonase 1 (PON1) is an antioxidative protein involved in high density lipoprotein (HDL) function and was found to be associated with AMD. Here, we used Pon1(-/-) mice to study the influence of PON1 on retinal physiology and to reveal the potential impact of PON1 on AMD etiology.

Methods: Laser capture microdissection served to isolate single retinal layers. Retinal function was assessed by ERG. Retinal and RPE morphology were monitored by fundus imaging, fluorescein angiography, light and transmission electron microscopy, and immunofluorescence microscopy. Levels of mRNA and composition of phospholipid species were determined by real-time PCR and LC-MS, respectively.

Results: Adult (8 weeks old) Pon1(-/-) mice displayed normal retinal function and morphology, but their retinas contained reduced amounts of lysophosphatidylcholines (LPCs) compared to controls. Aged (12 months old) Pon1(-/-) animals did not show any morphologic or molecular signs of photoreceptor or RPE degeneration, or of accelerated aging. Photoreceptors of Pon1(-/-) and control mice were similarly susceptible to light damage.

Conclusions: Results indicated that PON1 is not essential for normal development, function, ageing, and the defense against light damage of the mouse retina. Reduced levels of LPCs in eyes of Pon1(-/-) mice may reflect a decreased activity of phospholipase A2 or altered antioxidative activity in aged eyes.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.14-14332DOI Listing

Publication Analysis

Top Keywords

pon1-/- mice
12
mouse retina
8
retinal function
8
function
5
pon1-/-
5
retinal
5
lack paraoxonase
4
paraoxonase alters
4
alters phospholipid
4
phospholipid composition
4

Similar Publications

Paraoxonase 1 ameliorates neurological symptoms and motor coordination impairment caused by cerebral ischemia-reperfusion injury.

Biomed Pharmacother

December 2024

Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-0033, Japan. Electronic address:

Article Synopsis
  • HDL (high-density lipoprotein) has protective effects against cerebral infarction due to its antioxidant, anti-inflammatory, and antithrombotic properties, but there's a lack of effective clinical treatments.
  • Researchers focused on paraoxonase 1 (PON1), an enzyme linked to HDL, to develop it as a new therapy for ischemia-reperfusion injury in stroke.
  • The study found that PON1 can effectively bind to HDL, reduce infarct volume in a mouse model, and improve neurological function, suggesting its potential as a treatment for acute stroke.
View Article and Find Full Text PDF

Paraoxonase-1 Is a Pivotal Regulator Responsible for Suppressing Allergic Airway Inflammation Through Adipose Stem Cell-Derived Extracellular Vesicles.

Int J Mol Sci

November 2024

Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan 50612, Republic of Korea.

Although adipose stem cell (ASC)-derived extracellular vesicles (EVs) are as effective as ASCs in the suppression of Th2 cell-mediated eosinophilic inflammation, the role of identified pulmonary genes has not been well documented. Thus, we assessed the immunomodulatory effects of paraoxonase-1 (PON1) on allergic airway inflammation in a mouse model of asthma. Five-week-old female C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection and challenged intranasally with OVA.

View Article and Find Full Text PDF

Throughout the recent decades, obesity has become a serious health problem that raises the risk of several diseases, including cancer, diabetes, hypertension, heart disease, neurological musculoskeletal disorders, and Non-alcoholic fatty liver disease. Some strategies, such as dietary interventions, calorie restriction (CR), and the use of antioxidant compounds, have been proposed to improve quality of life in relation to obesity. The goal of this study was to characterize the effects of CR and quercetin (QUER) on obesity-induced oxidative stress (OS).

View Article and Find Full Text PDF

The Molecular Bases of Anti-Oxidative and Anti-Inflammatory Properties of Paraoxonase 1.

Antioxidants (Basel)

October 2024

Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland.

The anti-oxidative and anti-inflammatory properties of high-density lipoprotein (HDL) are thought to be mediated by paraoxonase 1 (PON1), a calcium-dependent hydrolytic enzyme carried on a subfraction of HDL that also carries other anti-oxidative and anti-inflammatory proteins. In humans and mice, low PON1 activity is associated with elevated oxidized lipids and homocysteine (Hcy)-thiolactone, as well as proteins that are modified by these metabolites, which can cause oxidative stress and inflammation. PON1-dependent metabolic changes can lead to atherothrombotic cardiovascular disease, Alzheimer's disease, and cancer.

View Article and Find Full Text PDF

Loss of interferon regulatory factor-1 prevents lung fibrosis by upregulation of pon1 expression.

Respir Res

November 2024

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Background: Interferon regulatory factor-1 (IRF1) is a transcription factor that plays a significant role in various biological processes, including inflammatory injury, viral infection, cell death, and immune responses, and it has been extensively studied in the context of different lung diseases. However, the mechanism underlying its involvement in lung fibrosis remains largely unknown.

Methods: Wild type (WT) mice, IRF1 global-null mice (Irf1) were subjected to a bleomycin-induced lung fibrosis model to enable examination of the role of IRF1 in lung fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!