Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer.

Biomaterials

Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:

Published: October 2014

Prostate cancer is the most commonly diagnosed cancer disease in men in the Unites States and its management remains a challenge in everyday oncology practice. Thus, advanced therapeutic strategies are required to treat prostate cancer patients. Curcumin (CUR) is a promising anticancer agent for various cancer types. The objective of this study was to evaluate therapeutic potential of novel poly(lactic-co-glycolic acid)- CUR nanoparticles (PLGA-CUR NPs) for prostate cancer treatment. Our results indicate that PLGA-CUR NPs efficiently internalize in prostate cancer cells and release biologically active CUR in cytosolic compartment of cells for effective therapeutic activity. Cell proliferation (MTS), clonogenic, and Western blot analyses reveal that PLGA-CUR NPs can effectively inhibit proliferation and colony formation ability of prostate cancer cells than free CUR. PLGA-CUR NPs showed superior tumor regression compared to CUR in xenograft mice. Further investigations reveal that PLGA-CUR NPs inhibit nuclear β-catenin and AR expression in cells and in tumor xenograft tissues. It also suppresses STAT3 and AKT phosphorylation and leads to apoptosis via inhibition of key anti-apoptotic proteins, Mcl-1, Bcl-xL and caused induction of PARP cleavage. Additionally, significant downregulation of oncogenic miR21 and up-regulation of miR-205 was observed with PLGA-CUR NPs treatment as determined by RT-PCR and in situ hybridization analyses. A superior anti-cancer potential was attained with PSMA antibody conjugated PLGA-CUR NPs in prostate cancer cells and a significant tumor targeting of (131)I labeled PSMA antibody was achieved with PLGA-CUR NPs in prostate cancer xenograft mice model. In conclusion, PLGA-CUR NPs can significantly accumulate and exhibit superior anticancer activity in prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220612PMC
http://dx.doi.org/10.1016/j.biomaterials.2014.06.040DOI Listing

Publication Analysis

Top Keywords

prostate cancer
36
plga-cur nps
36
nps prostate
12
cancer cells
12
cancer
11
prostate
9
plga-cur
9
nps
9
reveal plga-cur
8
xenograft mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!