Background: DNA methylation is an epigenetic regulatory mechanism that plays an essential role in mediating biological processes and determining phenotypic plasticity in organisms. Although the horse reference genome and whole transcriptome data are publically available the global DNA methylation data are yet to be known.

Results: We report the first genome-wide DNA methylation characteristics data from skeletal muscle, heart, lung, and cerebrum tissues of thoroughbred (TH) and Jeju (JH) horses, an indigenous Korea breed, respectively by methyl-DNA immunoprecipitation sequencing. The analysis of the DNA methylation patterns indicated that the average methylation density was the lowest in the promoter region, while the density in the coding DNA sequence region was the highest. Among repeat elements, a relatively high density of methylation was observed in long interspersed nuclear elements compared to short interspersed nuclear elements or long terminal repeat elements. We also successfully identified differential methylated regions through a comparative analysis of corresponding tissues from TH and JH, indicating that the gene body regions showed a high methylation density.

Conclusions: We provide report the first DNA methylation landscape and differentially methylated genomic regions (DMRs) of thoroughbred and Jeju horses, providing comprehensive DMRs maps of the DNA methylome. These data are invaluable resource to better understanding of epigenetics in the horse providing information for the further biological function analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117963PMC
http://dx.doi.org/10.1186/1471-2164-15-598DOI Listing

Publication Analysis

Top Keywords

dna methylation
24
methylation
9
dna
8
analysis dna
8
methylation patterns
8
thoroughbred jeju
8
jeju horses
8
repeat elements
8
interspersed nuclear
8
nuclear elements
8

Similar Publications

As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults.

View Article and Find Full Text PDF

Aging is a complex process characterized by biological decline and a wide range of molecular alterations to cells, including changes to DNA methylation. In this study, we used a male-specific epigenetic marker of aging to build an epigenetic predictor that measures long-term androgen exposure in sheep and mice (median absolute error of 4.3 and 1.

View Article and Find Full Text PDF

Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).

View Article and Find Full Text PDF

Genetics of Prader-Willi and Angelman syndromes: 2024 update.

Curr Opin Psychiatry

December 2024

Departments of Psychiatry &, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, United States.

Purpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.

Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.

View Article and Find Full Text PDF

Aims: This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract.

Methods: This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!