Nuclear magnetic resonance (NMR) is a key technology in the biophysicist's toolbox for gaining atomic-level insight into structure and dynamics of biomolecules. Investigation of the amyloid-β peptide (Aβ) of Alzheimer's disease is one area where NMR has proven useful, and holds even more potential. A barrier to realizing this potential, however, is the expense of the isotopically enriched peptide required for most NMR work. Whereas most biomolecular NMR studies employ biosynthetic methods as a very cost-effective means to obtain isotopically enriched biomolecules, this approach has proven less than straightforward for Aβ. Furthermore, the notorious propensity of Aβ to aggregate during purification and handling reduces yields and increases the already relatively high costs of solid phase synthesis methods. Here we report our biosynthetic and purification developments that yield pure, uniformly enriched ¹⁵N and ¹³C¹⁵N Aβ(1-42), in excess of 10 mg/L of culture media. The final HPLC-purified product was stable for long periods, which we characterize by solution-state NMR, thioflavin T assays, circular dichroism, electrospray mass spectrometry, and dynamic light scattering. These developments should facilitate further investigations into Alzheimer's disease, and perhaps misfolding diseases in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-014-1796-x | DOI Listing |
Surg Radiol Anat
January 2025
Department of Ophthalmology & Visual Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.
Purpose: To report the normative dimensions of the frontal nerve (FN) on fat-suppressed suppressed gadolinium (fs-gad) enhanced magnetic resonance imaging (MRI).
Method: A retrospective cohort study of patients who underwent coronal fs-gad T1-weighted MRI. Orbits were excluded if there was unilateral or bilateral pathology of the FN or optic nerve sheath (ONS), incomplete MRI sequences, poor image quality or indiscernible FN on radiological assessment.
World J Microbiol Biotechnol
January 2025
Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.
Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.
View Article and Find Full Text PDFInorg Chem
January 2025
NUPOM Lab, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
An understanding of proton transfer and migration at the surfaces of solid metal oxides and related molecular polyoxometalates (POMs) and metal alkoxides is crucial for the development of reactivity involving protonation or the absorption/binding of water. In this work, the hydrolysis of alkoxido Ti- and Sn-substituted Lindqvist [(MeO)MWO] (M = Ti, ; M = Sn, ) and Keggin [(MeO)MPWO] (M = Ti, ; M = Sn, ) type polyoxometalates (POMs) to hydroxido derivatives and subsequent condensation to μ-oxido species has been investigated in detail to provide insight into proton transfer reactions in these molecular metal oxide systems. Solution NMR studies revealed the dependence of reactions not only on the nature of the heteroatom (Ti or Sn) but also on the type of lacunary (W or PW) POM and also on the solvent (MeCN or DMSO).
View Article and Find Full Text PDFPhysiol Rep
February 2025
Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
The maintenance of an appropriate ratio of body fat to muscle mass is essential for the preservation of health and performance, as excessive body fat is associated with an increased risk of various diseases. Accurate body composition assessment requires precise segmentation of structures. In this study we developed a novel automatic machine learning approach for volumetric segmentation and quantitative assessment of MRI volumes and investigated the efficacy of using a machine learning algorithm to assess muscle, subcutaneous adipose tissue (SAT), and bone volume of the thigh before and after a strength training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!