The phyllosphere, the aerial parts of terrestrial plants, represents the largest biological interface on Earth. This habitat is colonized by diverse microorganisms that affect plant health and growth. However, the community structure of these phyllosphere microorganisms and their responses to environmental changes, such as rising atmospheric CO2, are poorly understood. Using a massive parallel pyrosequencing technique, we investigated the feedback of a phyllosphere bacterial community in rice to elevated CO2 (eCO2) at the tillering, filling, and maturity stages under nitrogen fertilization with low (LN) and high application rates (HN). The results revealed 9,406 distinct operational taxonomic units that could be classified into 8 phyla, 13 classes, 26 orders, 59 families, and 120 genera. The family Enterobacteriaceae within Gammaproteobacteria was the most dominant phylotype during the rice growing season, accounting for 61.0-97.2 % of the total microbial communities. A statistical analysis indicated that the shift in structure and composition of phyllosphere bacterial communities was largely dependent on the rice growing stage. eCO2 showed a distinct effect on the structure of bacterial communities at different growth stages, and the most evident response of the community structure to eCO2 was observed at the filling stage. eCO2 significantly increased the relative abundance of the most dominant phylotype (Enterobacteriaceae) from 88.6 % at aCO2 (ambient CO2) to 97.2 % at eCO2 under LN fertilization at the filling stage, while it significantly decreased the total relative abundance of other phylotypes from 7.48 to 1.35 %. Similarly, higher value for the relative abundance of the most dominant family (Enterobacteriaceae) and lower value for the total relative abundance of other families were observed under eCO2 condition at other growth stages and under different N fertilizations, but the difference was not statistically significant. No consistent response pattern was observed along growth stages that could be attributed to N treatments. These results provide useful insights into our understanding of the response of a phyllosphere bacterial community to eCO2 with regards to the diversity, composition, and structure during rice growing seasons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-014-5915-0 | DOI Listing |
J Hazard Mater
January 2025
Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
Three aerobic, pink-pigmented, Gram-negative, motile and rod-shaped bacterial strains, designated SD21, SI9 and SB2, were isolated from the phyllosphere of healthy litchis collected from three main producing sites of Guangdong Province, PR China. The 16S rRNA gene analysis showed that strains SD21 and SI9 belonged to the genus (.) with the highest similarity to DSM 19563 (98.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Biology, University of Mississippi, University, MS 38677, USA.
The phyllosphere (aerial plant surfaces colonized by microorganisms) remains an understudied ecosystem in terms of bacterial biogeography, particularly at intermediate or local spatial scales. This study characterized the phyllosphere bacterial community on the leaves of 87 trees sampled throughout a small town, encompassing an area of approximately 60 km. Sequencing of the 16S ribosomal RNA gene revealed the dominant bacterial phyla to be Alphaproteobacteria, Bacteroidetes, and Acidobacteria, consistent with other studies of the phyllosphere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!