Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reaction of Fe3(CO)12 with 1,2-dithiolene HSC6H2Cl2SH affords a mixture of complexes [Fe2(CO)6(μ-SC6H2Cl2S)] 1, [Fe2(SC6H2Cl2S)4] 2 and [Fe3(CO)7(μ3-SC6H2Cl2S)2] 3. In the course of the reaction the trimetallic cluster 3 is first formed and then converted into the known dinuclear compound 1 to afford finally the neutral diiron tetrakis(dithiolato) derivative 2. Compounds 2 and 3 have been studied by Mössbauer spectroscopy, X-ray crystallography and theoretical calculations. In compound 2 the metal atoms are in an intermediate-spin Fe(III) state (S(Fe) = 3/2) and each metal is bonded to a bridging dithiolene ligand and a non-bridging thienyl radical (S = 1/2). Magnetic measurements show a strong antiferromagnetic coupling in complex 2. Cyclic voltammetry experiments show that the mixed valence trinuclear cluster 3 undergoes a fully reversible one electron reduction. Additionally, compound 3 behaves as an electrocatalyst in the reduction process of protons to hydrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt01462f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!