Here we present a new resist design concept. By adding dilute cross-linkers to a chemically amplified molecular resist, we synergize entropic and enthalpic contributions to dissolution by harnessing both changes to molecular weight and changes in intermolecular bonding to create a system that outperforms resists that emphasize one contribution over the other. We study patterning performance, resist modulus, solubility kinetics and material redistribution as a function of cross-linker concentration. Cross-linking varies from dilute oligomerization to creating a highly networked system. The addition of small amounts of cross-linker improves resist performance by reducing material diffusion and redistribution during development and stiffening the features to avoid pattern collapse. The new dilute cross-linking system achieves the highest resolution of a sensitive molecular glass resist at 20 nm half-pitch and line-edge roughness (LER) of 4.3 nm and can inform new resist design towards patterned feature control at the molecular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/25/31/315301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!