Transition from reciprocal cooperation to persistent behaviour in social dilemmas at the end of adolescence.

Nat Commun

1] Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50018, Spain [2] Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés, Madrid 28911, Spain.

Published: July 2014

While human societies are extraordinarily cooperative in comparison with other social species, the question of why we cooperate with unrelated individuals remains open. Here we report results of a lab-in-the-field experiment with people of different ages in a social dilemma. We find that the average amount of cooperativeness is independent of age except for the elderly, who cooperate more, and a behavioural transition from reciprocal, but more volatile behaviour to more persistent actions towards the end of adolescence. Although all ages react to the cooperation received in the previous round, young teenagers mostly respond to what they see in their neighbourhood regardless of their previous actions. Decisions then become more predictable through midlife, when the act of cooperating or not is more likely to be repeated. Our results show that mechanisms such as reciprocity, which is based on reacting to previous actions, may promote cooperation in general, but its influence can be hindered by the fluctuating behaviour in the case of children.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms5362DOI Listing

Publication Analysis

Top Keywords

transition reciprocal
8
previous actions
8
reciprocal cooperation
4
cooperation persistent
4
persistent behaviour
4
behaviour social
4
social dilemmas
4
dilemmas adolescence
4
adolescence human
4
human societies
4

Similar Publications

Experimental objectives were to create a chronic inflammatory model to evaluate the effects of persistent immune activation on metabolism, inflammation, and productivity in lactating dairy cows. Twelve lactating Holstein cows (631 ± 16 kg BW; 124 ± 15 DIM) were enrolled in a study with 2 experimental periods (P); during P1 (5 d), cows were fed ad libitum and baseline data were obtained. At the initiation of P2 (7 d), cows were assigned to 1 of 2 treatments: 1) saline-infused and pair-fed (PF; 5 mL intravenously (IV) sterile saline on d 1, 3, and 5; n = 6) or 2) lipopolysaccharide infused and ad libitum-fed (LPS; 0.

View Article and Find Full Text PDF

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons.

View Article and Find Full Text PDF

We encountered a single case in which a transition between orthodromic reciprocating tachycardia with a concealed nodoventricular pathway and atrioventricular nodal reentrant tachycardia with a bystander nodoventricular pathway was observed.

View Article and Find Full Text PDF

We study Hopfield networks with non-reciprocal coupling inducing switches between memory patterns. Dynamical phase transitions occur between phases of no memory retrieval, retrieval of multiple point-attractors, and limit-cycle attractors. The limit cycle phase is bounded by two critical regions: a Hopf bifurcation line and a fold bifurcation line, each with unique dynamical critical exponents and sensitivity to perturbations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!