The long term effect of biochar application on soil microbial biomass is not well understood. We measured soil microbial biomass carbon (MBC) and nitrogen (MBN) in a field experiment during a winter wheat growing season after four consecutive years of no (CK), 4.5 (B4.5) and 9.0 t biochar ha(-1) yr(-1) (B9.0) applied. For comparison, a treatment with wheat straw residue incorporation (SR) was also included. Results showed that biochar application increased soil MBC significantly compared to the CK treatment, and that the effect size increased with biochar application rate. The B9.0 treatment showed the same effect on MBC as the SR treatment. Treatments effects on soil MBN were less strong than for MBC. The microbial biomass C∶N ratio was significantly increased by biochar. Biochar might decrease the fraction of biomass N mineralized (KN), which would make the soil MBN for biochar treatments underestimated, and microbial biomass C∶N ratios overestimated. Seasonal fluctuation in MBC was less for biochar amended soils than for CK and SR treatments, suggesting that biochar induced a less extreme environment for microorganisms throughout the season. There was a significant positive correlation between MBC and soil water content (SWC), but there was no significant correlation between MBC and soil temperature. Biochar amendments may therefore reduce temporal variability in environmental conditions for microbial growth in this system thereby reducing temporal fluctuations in C and N dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098902 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102062 | PLOS |
NPJ Biofilms Microbiomes
January 2025
School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.
Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.
View Article and Find Full Text PDFSci Rep
January 2025
Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
Chemical fungicides have been used to control fungal diseases like Sclerotinia sclerotiorum. These fungicides must be restricted because of their toxicity and the development of resistance strains. Therefore, utilizing natural nanoscale materials in agricultural production is a potential alternative.
View Article and Find Full Text PDFEnviron Res
January 2025
Jiangsu Water Conservancy Construction Engineering co.,ltd, Yangzhou, P. R. China.
Biochar is one of the ways for carbon storage, pollution control and biosolid reuse. Aquatic plant reeds are widely used in nutrient removal in wetlands and have huge biomass. Nonetheless, little is known regarding the effects of reed-based biochar on sediments.
View Article and Find Full Text PDFPLoS One
January 2025
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
Desertification is a major ecological issue worldwide that results in the destruction of terrestrial ecosystems. Restoration of desertified ecosystems has been carried out in recent decades, but the role of soil microorganisms in this process is poorly understood. Thus, to deconstruct the effects of desertified system restoration on soil microbial communities, we examined the changes in soil characteristics as well as the variations in and drivers of soil microbial diversity and community composition of the Hulun Buir Sandy Land in Northeast China, where restoration activities have been performed for approximately 30 years.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
QU Health, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
In recent years, there has been a growing interest in developing a distinguished alternative to human consumption of animal-based proteins. The application of lentil proteins in the food industry is typically limited due to their poor solubility and digestibility. An innovative method of balancing lentil-whey protein (LP-WP) complexes with higher-quality protein properties was established to address this issue, which coupled a pH-shifting approach with fermentation treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!