From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending the GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl501680w | DOI Listing |
Nano Lett
September 2024
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Bimetallic nanowires play important roles in the fields of electronics and mechanics. However, their structure types and morphological control methods are limited, especially for systems with low lattice mismatch. Herein, for a Cu-Ni bimetallic system with lattice mismatch ratio less than 2.
View Article and Find Full Text PDFJ Math Biol
July 2022
School of Mathematics and Physics, The University of Queensland, St Lucia Campus, St Lucia, 4072, Queensland, Australia.
Contraction of actomyosin networks underpins important cellular processes including motility and division. The mechanical origin of actomyosin contraction is not fully-understood. We investigate whether contraction arises on the scale of individual filaments, without needing to invoke network-scale interactions.
View Article and Find Full Text PDFPhys Rev E
February 2018
Laboratoire PMMH, UMR 7636 CNRS/ESPCI Paris/PSL Research University/Sorbonne Universités, UPMC Univ Paris 06,/Univ Paris Diderot, 10 rue Vauquelin, 75231 Paris cedex 05, France.
We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L/L_{c}, which is the ratio of the length of the flexible beam L to L_{c}, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium.
View Article and Find Full Text PDFNano Lett
August 2014
Environmental Molecular Sciences Laboratory and §Energy and Environmental Directorate, Pacific Northwest National Laboratory , 902 Battelle Boulevard, Richland, Washington 99352, United States.
From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending.
View Article and Find Full Text PDFPhys Rev Lett
May 2014
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
Monolayer transition-metal dichalcogenides (TMDCs) display valley-selective circular dichroism due to the presence of time-reversal symmetry and the absence of inversion symmetry, making them promising candidates for valleytronics. In contrast, in bilayer TMDCs both symmetries are present and these desirable valley-selective properties are lost. Here, by using density-functional tight-binding electronic structure simulations and revised periodic boundary conditions, we show that bending of bilayer MoS2 sheets breaks band degeneracies and localizes states on separate layers due to bending-induced strain gradients across the sheets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!