Salt-sensitive hypertension is produced by a decrease in salt renal excretion after a salt overload. Over the last few years, a new theory has been developed to explain this condition based on renal tissue inflammation. This process begins with free radicals production in renal tissue due to oxidative metabolism. Then they favor a renal inflammation mechanism with T-lymphocytes infiltration and other immune cells. Essentially, T-lymphocytes determine an increase in angiotensin ii production which raises sodium and water retention. Association among autoimmune diseases and hypertension may be explained, in part, by the relationship between salt-sensitive hypertension and renal inflammation. The use of antioxidant drugs and the development of new medicaments may be a choice for treating patients affected with this condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acmx.2014.02.002 | DOI Listing |
Endocrinol Diabetes Metab
January 2025
Department of Endocrinology and Metabolism, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China.
Objectives: To study the significance of serum 25-hydroxyvitamin D [25-(OH)D] level in the clinicopathological characteristics and prognosis of children with immunoglobulin A vasculitis nephritis (IgAVN).
Methods: A retrospective analysis was conducted on the clinical data of children with IgAVN who underwent renal biopsy at Suzhou Hospital Affiliated to Anhui Medical University and Jinling Hospital of the Medical School of Nanjing University from June 2015 to June 2020. Based on serum 25-(OH)D level, the patients were divided into a normal group and a lower group.
Expert Rev Gastroenterol Hepatol
January 2025
Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi.
Introduction: Acute kidney injury (AKI) in patients with acute-on-chronic liver failure (ACLF) is driven by the severity of systemic inflammation, acute portal hypertension driving circulatory dysfunction, hyperbilirubinemia, and toxicity of bile acids. The spectrum is mostly structural, associated with reduced response to vasoconstrictors. The progression is rapid and need of renal replacement therapy and extracorporeal therapies may be required for the management.
View Article and Find Full Text PDFArtif Organs
January 2025
Laboratory for Immune Response and Regulatory Medicine, Fujita Health University School of Medicine, Toyoake, Japan.
Background: The pathogenesis of sepsis is thought to be linked to a dysregulated immune response, particularly that involving neutrophils. We have developed a granulocyte adsorption column as a "decoy organ," which relocates the massive inflammation in organs in the body to a blood purification column. This study was conducted to assess the safety and experimental effectiveness of granulocyte monocyte adsorption apheresis-direct hemoperfusion (G1-DHP) in the treatment of patients with sepsis, using a prospective, multicenter design.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India. Electronic address:
Recent advances in CRISPR-Cas systems have revolutionised the study and treatment of kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and polycystic kidney disease (PKD). CRISPR-Cas technology offers precise and versatile tools for genetic modification in monogenic kidney disorders such as PKD and Alport syndrome. Recent advances in CRISPR technology have also shown promise in addressing other kidney diseases like AKI, CKD, and DKD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!