Background: Non-invasive methods allow the evaluation of structural and functional arterial abnormalities. So far, no study has focused on the comparison of vascular parameters by type of cardiovascular event.

Methods: In this pilot study, cardiovascular risk factors, carotid parameters, carotid-to-femoral pulse wave velocity (PWV), brachial flow-mediated dilation and ambulatory blood pressure were assessed in patients who presented with acute coronary syndromes (ACS) or ischaemic atherothrombotic stroke (IAS). Groups were matched for age and gender.

Results: Prevalences of hypertension, diabetes and dyslipidaemia and heredity, smoking and body mass index were similar in the ACS (n=50) and IAS (n=50) groups. Carotid intima-media thickness (IMT) and PWV were significantly higher in the IAS vs. ACS group (769±180 vs. 701±136 μm; P=0.039 and 12.5±3.5 vs. 10.7±2.4 m/s; P=0.006). Carotid distensibility was significantly lower in the IAS vs. ACS group (16.2±3.2 vs. 18.9±7.6 10(-3)/kPa; P=0.02). These differences persisted after adjustment for blood pressure for carotid distensibility but not for PWV. The prevalences of endothelial dysfunction and carotid plaques were not significantly different in the ACS and IAS groups (86% and 74%; 80% and 78%). In a multivariable model, carotid distensibility remained associated with ACS (odds ratio 1.19; 95% confidence interval 1.03-1.38; P=0.016).

Conclusions: Stiffness and carotid wall thickness were higher in IAS than in ACS patients. These differences may support the interest in new therapeutic targets for cardiovascular secondary prevention.

Nct No: NCT00926874.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acvd.2014.05.007DOI Listing

Publication Analysis

Top Keywords

ias acs
12
carotid distensibility
12
ischaemic atherothrombotic
8
atherothrombotic stroke
8
acute coronary
8
coronary syndromes
8
blood pressure
8
ias groups
8
higher ias
8
acs group
8

Similar Publications

Precise Regulation of In Situ Exsolution Components of Nanoparticles for Constructing Active Interfaces toward Carbon Dioxide Reduction.

ACS Nano

January 2025

Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.

View Article and Find Full Text PDF

Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential.

View Article and Find Full Text PDF

Structural Determinants of Peptide Nanopore Formation.

ACS Nano

June 2024

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States.

We have evolved the nanopore-forming macrolittin peptides from the bee venom peptide melittin using successive generations of synthetic molecular evolution. Despite their sequence similarity to the broadly membrane permeabilizing cytolytic melittin, the macrolittins have potent membrane selectivity. They form nanopores in synthetic bilayers made from 1-palmitoyl, 2-oleoyl-phosphatidylcholine (POPC) at extremely low peptide concentrations and yet have essentially no cytolytic activity against any cell membrane, even at high concentration.

View Article and Find Full Text PDF

Hydrophilic-coated intermittent catheters have improved the experience of intermittent urinary catheterization for patients compared to conventional gel-lubricated uncoated catheters. However, the incorporation of polyvinylpyrrolidone (PVP) within hydrophilic coatings can lead to significant issues with coating dry-out. Consequently, increased force on catheter withdrawal may cause complications, including urethral microtrauma and pain.

View Article and Find Full Text PDF

Potassium-sulfur (K-S) batteries are one of the promising high-energy-density candidates beyond current lithium-ion batteries. Nevertheless, in practice, the utilization of K-S batteries is largely hindered due to the dissolution and shuttle effect of the cathode redox intermediates and the scarcity of an effective anode protection layer in conventional electrolytes. Herein, electrolyte engineering is applied to formulate an ether-based localized high-concentration electrolyte (LHCE) for the first time in a K-S cell with the mitigated parasitic effect of polysulfide dissolution and shuttle and the tuned anode-electrolyte interface property.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!