Tissue-specific gene expression is tightly regulated by various elements such as promoters, enhancers, and long noncoding RNAs (lncRNAs). In the present study, we identified a conserved noncoding sequence (CNS1) as a novel enhancer for the spermatocyte-specific mouse testicular cell adhesion molecule 1 (Tcam1) gene. CNS1 was located 3.4kb upstream of the Tcam1 gene and associated with histone H3K4 mono-methylation in testicular germ cells. By the in vitro reporter gene assay, CNS1 could enhance Tcam1 promoter activity only in GC-2spd(ts) cells, which were derived from mouse spermatocytes. When we integrated the 6.9-kb 5'-flanking sequence of Tcam1 with or without a deletion of CNS1 linked to the enhanced green fluorescent protein gene into the chromatin of GC-2spd(ts) cells, CNS1 significantly enhanced Tcam1 promoter activity. These results indicate that CNS1 could function as a spermatocyte-specific enhancer. Interestingly, CNS1 also showed high bidirectional promoter activity in the reporter assay, and consistent with this, the Smarcd2 gene and lncRNA, designated lncRNA-Tcam1, were transcribed from adjacent regions of CNS1. While Smarcd2 was ubiquitously expressed, lncRNA-Tcam1 expression was restricted to testicular germ cells, although this lncRNA did not participate in Tcam1 activation. Ubiquitous Smarcd2 expression was correlated to CpG hypo-methylation of CNS1 and partially controlled by Sp1. However, for lncRNA-Tcam1 transcription, the strong association with histone acetylation and histone H3K4 tri-methylation also appeared to be required. The present data suggest that CNS1 is a spermatocyte-specific enhancer for the Tcam1 gene and a bidirectional promoter of Smarcd2 and lncRNA-Tcam1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2014.06.018 | DOI Listing |
Genetica
June 2023
Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, Gainesville, 32608, USA.
The sterile insect technique (SIT) is a highly effective biologically-based method for the population suppression of highly invasive insect pests of medical and agricultural importance. The efficacy of SIT could be significantly enhanced, however, by improved methods of male sterilization that avoid the fitness costs of irradiation. An alternative sterilization method is possible by gene-editing that targets genes essential for sperm maturation and motility, rendering them nonfunctional, similar to the CRISPR-Cas9 targeting of β2-tubulin in the genetic model system, Drosophila melanogaster.
View Article and Find Full Text PDFPLoS One
August 2022
Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
A mouse testis-specific long noncoding RNA (lncRNA), Start, is localized in the cytosol of Leydig cells and in the nucleus of pachytene spermatocytes. We previously showed that Start regulates steroidogenesis through controlling the expression of Star and Hsd3b1 genes in Leydig cells, but its function in germ cells was not known. Here we verified that a spermatocyte-specific protease gene, Prss43/Tessp-3, was downregulated in Start-knockout testes.
View Article and Find Full Text PDFDev Growth Differ
May 2021
Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan.
Drosophila spermatocytes grow up to 25 times their original volume before the onset of male meiosis. Several insulin-like peptides and their cognate receptors (InR) are essential for the cell growth process in Drosophila. Here, we aimed to identify additional signaling pathways and other regulatory factors required for germline cell growth in Drosophila males.
View Article and Find Full Text PDFDifferentiation
July 2021
School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China. Electronic address:
Long noncoding RNAs (lncRNAs) have been shown to execute key roles in spermatogenesis. However, little is known about how lncRNAs gene expression is itself regulated in the germ cells of testis. We previously demonstrated that high expression of lncRNA-Gm2044 exists in spermatocytes and can regulate male germ cell proliferation.
View Article and Find Full Text PDFBackground: Reliable marking systems are critical to the prospective field release of transgenic insect strains. This is to unambiguously distinguish released insects from wild insects in the field that are collected in field traps, and tissue-specific markers, such as those that are sperm-specific, have particular uses such as identifying wild females that have mated with released males. For tephritid fruit flies such as the Mexican fruit fly, Anastrepha ludens, polyubiquitin-regulated fluorescent protein body markers allow transgenic fly identification, and fluorescent protein genes regulated by the spermatocyte-specific β2-tubulin promoter effectively mark sperm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!