Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adjuvants have emerged as the best tools to enhance the efficacy of vaccination. However, the traditional adjuvants used in aquaculture may cause adverse alterations in fish making necessary the development of new adjuvants able to stimulate the immune system and offer strong protection against infectious pathogens with minimal undesirable effects. In this respect, flagellin seems an attractive candidate due to its ability to strongly stimulate the immune response of fish. In the present study, we have evaluated the ability of recombinant flagellin from Marinobacter algicola (MA) and Vibrio vulnificus (Vvul), a non-pathogenic and a pathogenic bacteria, respectively, to stimulate the innate immune system of gilthead seabream (Sparus aurata L.) and compare the effect with that of the classical flagellin from Salmonella enterica serovar Typhimurium (Salmonella Typhimurium, STF). Intraperitoneal injection of MA and Vvul resulted in a strong inflammatory response characterized by increased reactive oxygen species production and the infiltration of acidophilic granulocytes at the injection site. Interestingly, however, only flagellin from MA consistently induced the expression of the gene encoding pro-inflammatory interleukin-1β. These effects were further confirmed in vitro, where a dose-dependent activation of macrophages and acidophilic granulocytes by MA and Vvul flagellins was observed. In contrast, STF flagellin was found to be less potent in both in vivo and in vitro experiments. Our results suggest the potential use of MA and Vvul flagellins as immunostimulants and adjuvants for fish vaccination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2014.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!