Dengue virus disrupts Daxx and NF-κB interaction to induce CD137-mediated apoptosis.

Biochem Biophys Res Commun

Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. Electronic address:

Published: August 2014

Dengue virus (DENV) is a positive-strand RNA virus of the Flavivirus family with 4 different serotypes. Clinical manifestations of DENV infection include dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Following DENV infection, apoptosis of hepatic cells is observed both in vitro and in vivo. However, the molecular mechanisms revealing how viral components affect cellular apoptosis remain unclear. In the present study, the role of death domain-associated protein 6 (Daxx) in DENV-mediated apoptosis was characterized by RNA interference and overexpression studies, and the anti-apoptotic function of Daxx during DENV infection was identified. Furthermore, the viral component, DENV capsid protein (DENV C), interacted with Daxx to disrupt interaction between Daxx and NF-κB. The liberated NF-κB activated the promoter of CD137, which is a member of the TNF family, and is previously shown to induce apoptosis during DENV infection. In summary, DENV C disrupts Daxx and NF-κB interaction to induce CD137-mediated apoptosis during DENV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.07.016DOI Listing

Publication Analysis

Top Keywords

denv infection
20
daxx nf-κb
12
denv
9
dengue virus
8
disrupts daxx
8
nf-κb interaction
8
interaction induce
8
induce cd137-mediated
8
cd137-mediated apoptosis
8
fever dengue
8

Similar Publications

Simultaneous Blockade of CD209 and CD209L by Monoclonal Antibody Does Not Provide Sufficient Protection Against Multiple Viral Infections In Vivo.

Immunology

January 2025

The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1.

View Article and Find Full Text PDF

Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV.

View Article and Find Full Text PDF

Dengue virus (DENV) is a rapidly expanding infectious disease threat that causes an estimated 100 million symptomatic infections every year. A barrier to preventing DENV infections with traditional vaccines or prophylactic monoclonal antibody (mAb) therapies is the phenomenon of Antibody-Dependent Enhancement (ADE), wherein sub-neutralizing levels of DENV-specific IgG antibodies can enhance infection and pathogenesis rather than providing protection from disease. Fortunately, IgG is not the only antibody isotype capable of binding and neutralizing DENV, as DENV-specific IgA1 isotype mAbs can bind and neutralize DENV while without exhibiting any ADE activity.

View Article and Find Full Text PDF

The Compound AT13148 Targeting AKT Suppresses Dengue Virus 2 Replication.

Vector Borne Zoonotic Dis

January 2025

Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China.

Dengue virus (DENV) infection, caused by serotypes DENV 1-4, represents a significant global public health challenge, with no antiviral drugs currently available for treatment. The host Protein kinase B (AKT) signaling pathway is crucial for DENV infection, presenting a potential target for antiviral drug development. This study aimed to evaluate the antiviral activity of kinase inhibitors that target the AKT pathway, focusing on the compound AT13148.

View Article and Find Full Text PDF

This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!