We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.89.063002 | DOI Listing |
Adv Mater
December 2024
Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
Hydrogel bioadhesives with adequate wet adhesion and swelling resistance are urgently needed in clinic. However, the presence of blood or body fluid usually weakens the interfacial bonding strength, and even leads to adhesion failure. Herein, profiting from the unique coupling structure of carboxylic and phenyl groups in one component (N-acryloyl phenylalanine) for interfacial drainage and matrix toughening as well as various electrostatic interactions mediated by zwitterions, a novel hydrogel adhesive (PAAS) is developed with superior tissue adhesion properties and matrix swelling resistance in challenging wet conditions (adhesion strength of 85 kPa, interfacial toughness of 450 J m, burst pressure of 514 mmHg, and swelling ratio of <4%).
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
December 2024
Doheny Eye Institute, University of California, Los Angeles, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, USA.
Anti-vascular endothelial growth factor (VEGF) therapies have transformed the treatment of retinal diseases. However, VEGF signaling is only one component of the complex, multifactorial pathophysiology of retinal diseases, and many patients have residual disease activity despite ongoing anti-VEGF treatment. The angiopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor receptor-2 (Ang/Tie2) signaling pathway is critical to endothelial cell homeostasis, survival, integrity, and vascular stability.
View Article and Find Full Text PDFActa Neuropathol
August 2024
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA.
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease.
View Article and Find Full Text PDFJ Chem Phys
July 2024
Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 8, 91052 Erlangen, Germany.
The present work provides a systematic study on the influence of sample properties and experimental conditions on the reliable accessibility of Fick or mutual diffusion coefficients D11 and thermal diffusivities a in binary liquid mixtures using the shadowgraph method. For this, mixtures with varying magnitudes of the Soret coefficient ST and their optical contrast factors were studied at a temperature of 298.15 K and pressures between (0.
View Article and Find Full Text PDFPhys Rev E
June 2024
School of Fundamental Science and Technology, Keio University, Yokohama 223-8522, Japan.
We consider a binary fluid mixture, which lies in the one-phase region near the demixing critical point, and study its transport through a capillary tube linking two large reservoirs. We assume that short-range interactions cause preferential adsorption of one component onto the tube's wall. The adsorption layer can become much thicker than the molecular size, which enables us to apply hydrodynamics based on a coarse-grained free-energy functional.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!