We study the effects of smooth inhomogeneities at first-order transitions. We show that a temperature gradient at a thermally driven first-order transition gives rise to nontrivial universal scaling behaviors with respect to the length scale l_{t} of the variation of the local temperature T_{x}. We propose a scaling ansatz to describe the crossover region at the surface where T_{x}=T_{c}, where the typical discontinuities of a first-order transition are smoothed out. The predictions of this scaling theory are checked, and get strongly supported, by numerical results for the two-dimensional (2D) Potts models, for a sufficiently large number of states to have first-order transitions. Comparing with analogous results at the 2D Ising transition, we note that the scaling behaviors induced by a smooth inhomogeneity appear quite similar in first-order and continuous transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.89.062132DOI Listing

Publication Analysis

Top Keywords

first-order transitions
12
universal scaling
8
temperature gradient
8
first-order transition
8
scaling behaviors
8
first-order
6
scaling effects
4
effects temperature
4
gradient first-order
4
transitions
4

Similar Publications

A particle current generated by pumping in the absence of gradients in potential energy, density or temperature is associated with non-trivial dynamics. A representative example is charge pumping that is associated with the quantum Hall effect and the quantum anomalous Hall effect. Spin pumping, the spin equivalent of charge pumping, refers to the emission of a spin current by magnetization dynamics.

View Article and Find Full Text PDF

The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3  K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.

View Article and Find Full Text PDF

Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO: Nonequilibrium Contributions to the Photoinduced Phase Transitions.

J Phys Chem Lett

January 2025

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.

View Article and Find Full Text PDF

Background: Salbutamol, a short-acting β-agonist used in asthma treatment, is available in multiple formulations, including inhalers, nebulizers, oral tablets, and intravenous, intramuscular, and subcutaneous routes. Each formulation exhibits distinct pharmacokinetic (PK) and pharmacodynamic (PD) profiles, influencing therapeutic outcomes and adverse effects. Although asthma management predominantly relies on inhaled salbutamol, understanding how these formulations interact with patient-specific characteristics could improve personalized medicine approaches, potentially uncovering the therapeutic benefits of alternative formulations for an individual patient.

View Article and Find Full Text PDF

Analytic First-Order Derivatives of CASPT2 Combined with the Polarizable Continuum Model.

J Chem Theory Comput

January 2025

Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

The complete active space second-order perturbation theory (CASPT2) is valuable for accurately predicting electronic structures and transition energies. However, optimizing molecular geometries in the solution phase has proven challenging. In this study, we develop analytic first-order derivatives of CASPT2 using an implicit solvation model, specifically the polarizable continuum model, within the open-source package OpenMolcas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!