Spin caloritronics with a combination of spintronics and thermoelectrics has potential applications in future information science and opens a new direction in the development of multi-functional materials. Based on density functional theory and the nonequilibrium Green's function method, we calculate thermal spin-dependent transport through a zigzag silicon carbide nanoribbon (ZSiCNR), which is a heterojunction consisting of a left electrode (ZSiC-2H1H) and right electrode terminated (ZSiC-1H1H) by hydrogen. Our results show that when the temperature in the left contact increases over a critical value, the thermal spin-down current increases remarkably from zero, while the thermal spin-up current remains zero in the total-temperature region, indicating that a perfect thermal spin filter together with a perfect spin switcher is obtained. Furthermore, the thermal spin current shows a negative differential resistance effect and quantum oscillation behaviors. These results suggest that the zigzag SiC nanoribbon proposed by us can be designed as a highly-efficient spin caloritronics device with multiple functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp01886a | DOI Listing |
Phys Rev Lett
December 2024
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China.
Water electrolysis suffers from electron transfer barriers during oxygen evolution reactions, which are spin-related for magnetic materials. Here, the electron transfer at the Fe_{64}Ni_{36}-FeNiO_{x}H_{y} interface is effectively accelerated when the electrode is heated to trigger the Invar effect in Fe_{64}Ni_{36} Invar alloy, providing more unoccupied orbitals as electron transfer channels without pairing energy. As a result of thermally stimulated changes in electronic states, Fe_{64}Ni_{36}/FeNiO_{x}H_{y} achieved a cascaded oxidation of the catalytic center and water.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan 475004, China.
Phys Rev Lett
December 2024
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510 Mexico City, Mexico.
Quantum chaos has recently received increasing attention due to its relationship with experimental and theoretical studies of nonequilibrium quantum dynamics, thermalization, and the scrambling of quantum information. In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic. However, despite experimental progress leading to longer coherence times, interactions with an environment can never be neglected, which calls for a definition of quantum chaos in dissipative systems.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!