Exploring the molecular mechanisms of electron shuttling across the microbe/metal space.

Front Microbiol

Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras, Portugal.

Published: July 2014

Dissimilatory metal reducing organisms play key roles in the biogeochemical cycle of metals as well as in the durability of submerged and buried metallic structures. The molecular mechanisms that support electron transfer across the microbe-metal interface in these organisms remain poorly explored. It is known that outer membrane proteins, in particular multiheme cytochromes, are essential for this type of metabolism, being responsible for direct and indirect, via electron shuttles, interaction with the insoluble electron acceptors. Soluble electron shuttles such as flavins, phenazines, and humic acids are known to enhance extracellular electron transfer. In this work, this phenomenon was explored. All known outer membrane decaheme cytochromes from Shewanella oneidensis MR-1 with known metal terminal reductase activity and a undecaheme cytochrome from Shewanella sp. HRCR-6 were expressed and purified. Their interactions with soluble electron shuttles were studied using stopped-flow kinetics, NMR spectroscopy, and molecular simulations. The results show that despite the structural similarities, expected from the available structural data and sequence homology, the detailed characteristics of their interactions with soluble electron shuttles are different. MtrC and OmcA appear to interact with a variety of different electron shuttles in the close vicinity of some of their hemes, and with affinities that are biologically relevant for the concentrations typical found in the medium for this type of compounds. All data support a view of a distant interaction between the hemes of MtrF and the electron shuttles. For UndA a clear structural characterization was achieved for the interaction with AQDS a humic acid analog. These results provide guidance for future work of the manipulation of these proteins toward modulation of their role in metal attachment and reduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073285PMC
http://dx.doi.org/10.3389/fmicb.2014.00318DOI Listing

Publication Analysis

Top Keywords

electron shuttles
24
soluble electron
12
electron
10
molecular mechanisms
8
electron transfer
8
explored outer
8
outer membrane
8
interactions soluble
8
shuttles
6
exploring molecular
4

Similar Publications

Arsenic mobility and microbial community composition in the sediments of coastal wetlands driven by tidal action.

J Environ Sci (China)

July 2025

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China.

Arsenic (As) pollution in coastal wetlands has been receiving growing attention. However, the exact mechanism of As mobility driven by tidal action is still not completely understood. The results reveal that lower total As concentrations in solution were observed in the flood-ebb treatment (FE), with the highest concentration being 7.

View Article and Find Full Text PDF

Biogeochemical mechanisms of zero-valent iron and biochar for synergistically mitigating antimony uptake in rice.

J Environ Sci (China)

July 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:

Antimony (Sb) contamination in paddy fields can lead to its accumulation in rice grains, posing a threat to food safety. To address this issue, the combined use of zero-valent iron (ZVI) and biochar (BC) were applied to decrease the uptake of Sb in Sb-polluted soils, and their effects on Sb uptake from soil to rice grains were investigated. Our results showed that the combination treatment of 0.

View Article and Find Full Text PDF

Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored.

View Article and Find Full Text PDF

Extracellular electron shuttles induced transformation and mobilization of Fe/As with the occurrence of biogenic vivianite.

Ecotoxicol Environ Saf

January 2025

Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China. Electronic address:

Microorganisms that utilize organic matter to reduce Fe oxides/hydroxides constitute the primary geochemical processes controlling the formation of high-arsenic (As) groundwater. Biogenic secondary iron minerals play a significant role in As migration. However, the influence of quinone electron shuttles and competitive anionic phosphate on this process has not been thoroughly studied.

View Article and Find Full Text PDF

Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!