Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips.

Sens Actuators B Chem

Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA ; Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA.

Published: October 2014

A unique method for incorporating functional porous polymer monolith elements into thermoplastic microfluidic chips is described. Monolith elements are formed in a microfabricated mold, rather than within the microchannels, and chemically functionalized off chip before insertion into solvent-softened thermoplastic microchannels during chip assembly. Because monoliths may be trimmed prior to final placement, control of their size, shape, and uniformity is greatly improved over photopolymerization methods. A characteristic trapezoidal profile facilitates rapid insertion and enables complete mechanical anchoring of the monolith periphery, eliminating the need for chemical attachment to the microchannel walls. Off-chip processing allows the parallel preparation of monoliths of differing compositions and surface chemistries in large batches. Multifunctional flow-through arrays of multiple monolith elements are demonstrated using this approach through the creation of a fluorescent immunosensor with integrated controls, and a microfluidic bubble separator comprising a combination of integrated hydrophobic and hydrophilic monolith elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4088264PMC
http://dx.doi.org/10.1016/j.snb.2014.06.023DOI Listing

Publication Analysis

Top Keywords

monolith elements
16
porous polymer
8
thermoplastic microfluidic
8
microfluidic chips
8
monolith
5
situ integration
4
integration multifunctional
4
multifunctional porous
4
polymer monoliths
4
monoliths thermoplastic
4

Similar Publications

W-Band GaAs pHEMT Power Amplifier MMIC Stabilized Using Network Determinant Function.

Micromachines (Basel)

January 2025

Department of Radio and Information Communications Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

This paper presents a W-band power amplifier monolithic microwave integrated circuit (MMIC) that is designed for high-precision millimeter-wave systems and fabricated using a 0.1 µm GaAs pHEMT process. The amplifier's stability was evaluated using the network determinant function, ensuring robust performance under both linear and nonlinear conditions.

View Article and Find Full Text PDF

Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).

View Article and Find Full Text PDF

Objective: The use of vertical margin design in all-ceramic restoration has generated inquiries regarding its clinical efficacy under diverse dynamic oral conditions. This research aims to assess the marginal fit and fracture resistance of monolithic zirconia crowns featuring vertical margin design as opposed to those with conventional horizontal margin design.

Materials And Methods: Two metal dies were employed to generate replicated resin dies mimicking mandibular first molar preparation.

View Article and Find Full Text PDF

We study a multi-body finite element model of a packing of hydrogel particles using the Flory-Rehner constitutive law to model the deformation of the swollen polymer network. We show that while the dependence of the pressure, , on the effective volume fraction, , is virtually identical to a monolithic Flory material, the shear modulus, , behaves in a non-trivial way. increases monotonically with from zero and remains below about 80% of the monolithic Flory value at the largest we study here.

View Article and Find Full Text PDF

Although the accumulation of random genetic mutations has been traditionally viewed as the main cause of cancer progression, altered mechanobiological profiles of the cells and microenvironment also play a major role as a mutation-independent element. To probe the latter, we have previously reported a microfluidic cell-culture platform with an integrated flexible actuator and its application for sequential cyclic compression of cancer cells. The platform is composed of a control microchannel in a top layer for introducing external pressure, and a polydimethylsiloxane (PDMS) membrane from which a monolithically-integrated actuator protrudes downwards into a cell-culture microchannel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!