AI Article Synopsis

Article Abstract

This study investigated the effects of glufosinate, a widely used herbicide, on the marine diatom Phaeodactylum tricornutum through short-term toxicity tests at the physiological and gene transcriptional levels. Glufosinate (4 mg L(-1)) decreased the amount of pigments but increased reactive oxygen species (ROS) and malondialdehyde levels. As a glutamine synthetase (GS) inhibitor, glufosinate affected the transcripts and activities of key enzymes related to nitrogen assimilation. Transcript levels of GS and nitrate reductase (NR) in P. tricornutum decreased to only 57 and 26 % of the control. However, transcript levels of nitrate transporter (NRT) and the small subunit of glutamate synthase (GltD) were 1.79 and 1.76 times higher than that of the control. The activities of NRT, GS and GOGAT were consistent with gene expression except for NR, which was regulated mainly by post-translational modification. Furthermore, the results of electron microscopy showed that chloroplast structure was disrupted in response to glufosinate exposure. These results demonstrated that glufosinate first disturbed nitrogen metabolism and caused a ROS burst, which disrupted chloroplast ultrastructure. Ultimately, the growth of P. tricornutum was greatly inhibited by glufosinate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-014-1285-8DOI Listing

Publication Analysis

Top Keywords

nitrogen assimilation
8
phaeodactylum tricornutum
8
transcript levels
8
levels nitrate
8
glufosinate
7
levels
5
glufosinate nitrogen
4
assimilation physiological
4
physiological biochemical
4
biochemical molecular
4

Similar Publications

It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

Ammonia-Assimilating Bacteria Promote Wheat () Growth and Nitrogen Utilization.

Microorganisms

December 2024

Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.

Nitrogen fertilizers in agriculture often suffer losses. Ammonia-assimilating bacteria can immobilize ammonia and reduce these losses, but they have not been used in agriculture. This study identified an ammonia-assimilating strain, sp.

View Article and Find Full Text PDF

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek.

Plant Physiol Biochem

January 2025

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.

Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.

View Article and Find Full Text PDF

Augmented carbon utilization and ammonia assimilation in heterotrophic microorganism under magnetic field stimulation.

Environ Res

January 2025

School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China. Electronic address:

Ammonia assimilation is crucial in microbial nitrogen metabolism, and researching the impact of magnetic field (MF) on heterotrophic ammonia assimilation (HAA) contributes to improving nitrogen utilization and environmental remediation. This study systematically investigated the profound effects of MF stimulation on carbon and ammonia assimilation mechanisms in heterotrophic microorganisms. The dynamic responses of microbial carbon source metabolic efficiency and nitrogen source assimilation rates were quantitatively analyzed by designing a multidimensional stimulation environment of different nutrient levels (C/N 20, 25, 30) and MF intensities (0, 1, 20 mT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!