The molecular mechanisms responsible for the failure of antiangiogenic therapies and how tumors adapt to these therapies are unclear. Here, we applied transcriptomic, proteomic, and metabolomic approaches to preclinical models and provide evidence for tumor adaptation to vascular endothelial growth factor blockade through a metabolic shift toward carbohydrate and lipid metabolism in tumors. During sunitinib or sorafenib treatment, tumor growth was inhibited and tumors were hypoxic and glycolytic. In sharp contrast, treatment withdrawal led to tumor regrowth, angiogenesis restoration, moderate lactate production, and enhanced lipid synthesis. This metabolic shift was associated with a drastic increase in metastatic dissemination. Interestingly, pharmacological lipogenesis inhibition with orlistat or fatty acid synthase downregulation with shRNA inhibited tumor regrowth and metastases after sunitinib treatment withdrawal. Our data shed light on metabolic alterations that result in cancer adaptation to antiangiogenic treatments and identify key molecules involved in lipid metabolism as putative therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2014.05.022DOI Listing

Publication Analysis

Top Keywords

tumor regrowth
12
lipid synthesis
8
metabolic shift
8
lipid metabolism
8
treatment withdrawal
8
tumor
5
blocking lipid
4
synthesis overcomes
4
overcomes tumor
4
regrowth metastasis
4

Similar Publications

Background/objectives: Spinal astrocytomas (SA) represent 30-40% of all intramedullary spinal cord tumors (IMSCTs) and present significant clinical challenges due to their aggressive behavior and potential for recurrence. We aimed to pool the evidence on SA and investigate predictors of regrowth or recurrence after surgical resection.

Methods: A systematic review and meta-analysis were conducted on peer-reviewed human studies from several databases covering the field of SA.

View Article and Find Full Text PDF

Background: A phthalimide-functionalized heptamethine cyanine dye, named Ph790H, is used for targeted photothermal cancer therapy in vivo. We highlight that the chemical structure of Ph790H is newly designed and synthesized for the first time in this study.

Objectives: By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, the bifunctional near-infrared (NIR) fluorescent dye Ph790H can be preferentially accumulated in tumor without the need for additional targeting ligands, which is defined as the "structure-inherent tumor targeting" concept.

View Article and Find Full Text PDF

Cytokeratin-positive interstitial reticulum cell (CIRC) tumor is an extremely rare malignant neoplasm and a subtype of fibroblastic reticular cell tumor, classified within the dendritic cell tumor group. We describe a case of an epicardial CIRC tumor that was resected and subsequently recurred in the left pulmonary hilum. This recurrence was treated with immunotherapy followed by radiotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • In Japan, comprehensive genome profiling (CGP) as a diagnostic tool has been available through public insurance since June 2019, but only a small percentage of cancer patients are actually receiving treatments based on this data.
  • A study analyzed 219 patients with various cancers from Iwate Medical University Hospital, finding that only 6.4% acted on drug recommendations made by the Molecular Tumor Board after CGP analysis.
  • Despite low drug adoption rates, CGP proved useful for monitoring circulating tumor DNA (ctDNA), helping predict early relapses and evaluate treatment responses in a significant number of cases.
View Article and Find Full Text PDF

GPLD1+ cancer stem cells contribute to chemotherapy resistance and tumor relapse in intestinal cancer.

J Biochem

January 2025

Laboratory of Anticancer Strategies, Advanced Research Initiative, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Article Synopsis
  • Cancer stem cells (CSCs) are crucial in cancer growth and resistance, and recent research has identified GPLD1 as a marker for slowly cycling CSCs using a mouse intestinal cancer model.
  • Inhibiting GPLD1, particularly combined with the chemotherapy drug 5-fluorouracil, significantly reduces cancer cell viability and prevents tumor regrowth in organoids.
  • The study also reveals the role of GPLD1 in activating Wnt signaling and promoting epithelial-mesenchymal transition (EMT) through the cleavage of serine protease 8 (PRSS8), indicating that targeting GPLD1 could be a promising new treatment approach for colorectal cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!