The spin-orbit interaction plays a crucial role in diverse fields of condensed matter, including the investigation of Majorana fermions, topological insulators, quantum information and spintronics. In III-V zinc-blende semiconductor heterostructures, two types of spin-orbit interaction--Rashba and Dresselhaus--act on the electron spin as effective magnetic fields with different directions. They are characterized by coefficients α and β, respectively. When α is equal to β, the so-called persistent spin helix symmetry is realized. In this condition, invariance with respect to spin rotations is achieved even in the presence of the spin-orbit interaction, implying strongly enhanced spin lifetimes for spatially periodic spin modes. Existing methods to evaluate α/β require fitting analyses that often include ambiguity in the parameters used. Here, we experimentally demonstrate a simple and fitting parameter-free technique to determine α/β and to deduce the absolute values of α and β. The method is based on the detection of the effective magnetic field direction and the strength induced by the two spin-orbit interactions. Moreover, we observe the persistent spin helix symmetry by gate tuning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2014.128 | DOI Listing |
Npj Spintron
January 2025
Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
The interplay of electronic charge, spin, and orbital currents, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz lightwave spintronics and orbitronics. The essential rules for how terahertz fields interact with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
An accurate potential energy model, explicitly designed for studying scattering and treating the spin-orbit and nonadiabatic couplings on an equal footing, is proposed for the S + Ar system. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach, building the geometry dependence of the spin-orbit interaction a diabatisation scheme. The resulting full diabatic model is used in close-coupling calculations to compute inelastic scattering cross sections for de-excitation from the S(D) fine structure level into the P multiplet.
View Article and Find Full Text PDFOpt Express
January 2025
Phase distributions typically contain richer information about the morphology, structure, and organizational properties of a sample than intensity distributions. However, due to the weak scattering and absorption properties of pure phase objects, intensity measurements are unable to provide information about the phase, making it more challenging to reveal phase structure from the incident light background. Here, we propose a method for visualizing phase objects through simple optical reflection occurring at a glass interface.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, Mandi, Himachal Pradesh, 175075, INDIA.
Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA.
In this paper, we review our work on the manipulation of magnetization in ferromagnetic semiconductors (FMSs) using electric-current-induced spin-orbit torque (SOT). Our review focuses on FMS layers from the (Ga,Mn)As zinc-blende family grown by molecular beam epitaxy. We describe the processes used to obtain spin polarization of the current that is required to achieve SOT, and we briefly discuss methods of specimen preparation and of measuring the state of magnetization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!