Dilated cardiomyopathy (DCM) is the most frequent type of primary myocardial disorder responsible for substantial morbidity and mortality. DCM is the third most common cause of heart failure and the most common reason for heart transplantation. A recent study has implicated GATA4 mutation in the pathogenesis of familial DCM. However, the prevalence and spectrum of GATA4 mutations associated with sporadic DCM remain unclear. In this study, the coding exons and exon-intron boundaries of the GATA4 gene, which encodes a cardiac transcription factor crucial for normal cardiogenesis, were sequenced in 220 unrelated patients with sporadic DCM. A total of 200 unrelated ethnically-matched healthy individuals used as controls were genotyped. The functional characteristics of the mutant GATA4 were assayed in contrast to its wild-type counterpart using a luciferase reporter assay system. As a result, 3 novel heterozygous GATA4 mutations, p.V39L, p.P226Q and p.T279S, were identified in 3 unrelated patients with sporadic DCM, with a mutational prevalence of approximately 1.36%. The missense mutations were absent in 400 control chromosomes and the altered amino acids were completely conserved evolutionarily across species. Functional analysis showed that the GATA4 mutants were consistently associated with significantly decreased transcriptional activity and markedly reduced the synergistic activation between GATA4 and NKX2-5. This study firstly links GATA4 mutations to increased susceptibility to sporadic DCM and provides novel insight into the molecular etiology underlying DCM, suggesting the potential implications for the early prophylaxis and allele-specific treatment of this common form of cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2014.07.022 | DOI Listing |
Mol Ther Nucleic Acids
December 2024
McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) can be achieved by ectopic expression of cardiac transcription factors (TFs) via viral vectors. However, risks like genomic mutations, viral toxicity, and immune response limited its clinical application. Transactivation of endogenous TFs emerges as an alternative approach that may partially mitigate some of the risks.
View Article and Find Full Text PDFNat Cardiovasc Res
December 2024
McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Loeys-Dietz syndrome (LDS) is a connective tissue disorder caused by mutations that decrease transforming growth factor-β signaling. LDS-causing mutations increase the risk of aneurysm throughout the arterial tree, yet the aortic root is a site of heightened susceptibility. Here we investigate the heterogeneity of vascular smooth muscle cells (VSMCs) in the aorta of Tgfbr1 LDS mice by single-cell transcriptomics to identify molecular determinants of this vulnerability.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
Background & Aim: Congenital heart disease (CHD) is the most common cause of non-infectious deaths in infants worldwide. However, the molecular mechanisms underlying CHD remain unclear. Approximately 30 % of the causes are believed to be genetic mutations and chromosomal abnormalities.
View Article and Find Full Text PDFPLoS One
September 2024
University of Texas Health Science Center at Houston, Houston, Texas, United States of America.
Bicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms.
View Article and Find Full Text PDFCell Rep
August 2024
Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:
Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!