Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glioma stem cells (GSCs) are key in the progression and recurrence of glioblastoma. Inducing the differentiation of GSCs is an important therapeutic target for glioblastoma. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been reported to be important in maintaining the stem cell status of GSCs; however, its association with differentiation has not been studied. Herein, we knocked down Nrf2 from GSCs to investigate the role of Nrf2 in the differentiation of GSCs. First, Nrf2 expression was observed at different stages of differentiation; then, Nrf2 was knocked down and the association of Nrf2 with differentiation degree was observed in vitro. Finally, GSCs were planted in nude mice to study the association of Nrf2 with differentiation in vivo. The expression of Nrf2 decreased with the differentiation process. Following Nrf2 knockdown, the proportion of sphere-like colonies decreased and the dendritic cells in spheres increased; the expression of Nrf2 significantly decreased while the expression of differentiation marker glial fibrillary acidic protein (GFAP) and βIII-tubulin increased both at the protein and the gene level. In the xenografts of nude mice, the differentiation of tumor cells was improved. These results suggest that Nrf2 is a key factor inhibiting the differentiation of GSCs, and knockdown of Nrf2 may promote the differentiation process, providing a therapy target for GSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2014.3320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!