The purpose of this work was to develop a novel picropodophyllin-loaded micelle-like nanoparticle with a biodegradable amphiphilic star-shaped polycaprolactone-polyethyleneglycol copolymer (S-PCL-PEG). S-PCL-PEG was synthesized using star-shaped polycaprolactone (S-PCL) as a hydrophobic block and monomethoxy polyethyleneglycol (PEG) as a hydrophilic block and characterized by 1H-NMR. It was confirmed by the pyrene fluorescence probe method that the obtained S-PCL-PEG could form micelles through self-assembly in aqueous media. In addition, picropodophyllin (PPP), a hydrophobic anticancer drug, could be entrapped in the hydrophobic inner core of the micelles using the thin film hydration method, forming PPP-loaded micelle-like nanoparticles (PPP-NPs). PPP-NPs had a high encapsulation efficiency of greater than 90%, an average size of 90-110 nm with a symmetrical monodisperse distribution and a zeta potential of -18 mV. Additionally, in vitro release tests showed that approximately 70% of the drug was released from PPP-NPs into PBS (pH 7.4) containing 0.2% Tween 80 at 37 degrees C for 96 h, and the drug release data fit well to the Higuchi equation. Furthermore, an in vitro tumor cell growth inhibition assay showed that the IC50 values of the PPP solution and PPP-NPs against SMMC7721 liver cancer cell lines were 0.4 microg/ml and 0.2 microg/ml respectively, which indicated that the cytotoxicity of PPP-NPs against tumor cells was greater than that of the PPP solution. In conclusion, S-PCL-PEG micelle-like nanoparticles loaded with PPP have a promising future for administration by injection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2014.1835 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFMolecules
December 2024
Department of Molecular Biology and Genetics, Faculty of Arts and Science, Necmettin Erbakan University, Konya 42090, Turkey.
In the present study, ultra-small, magnetic, oleyl amine-coated FeO nanoparticles were synthesized and stabilized with a cationic ligand, cetyltrimethylammonium bromide, and an anticancer drug, methotrexate, was incorporated into a micelle-like nanoparticle structure for glioblastoma treatment. Nanoparticles were further characterized for their physicochemical properties using spectroscopic methods. Drug incorporation efficiency, drug loading, and drug release profile of the nanoparticles were investigated.
View Article and Find Full Text PDFActa Biomater
December 2024
Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA. Electronic address:
Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China.
Using the coordination bonds between transition metal atoms and electron-rich functional groups, we synthesized two kinds of micelle-like nanoparticles. Using magnetic FeO as the core, poly(methyl methacrylate) (PMMA) and poly(acrylic acid) (PAA) brushes were grafted via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP), which formed micelle-like magnetic nanoparticles FeO/PAA-PMMA with a hydrophobic outer layer and FeO/PMMA-PAA with a hydrophilic outer layer. Both the micelle-like nanoparticles had amphiphilic properties and can be used to load hydrophilic or hydrophobic drugs.
View Article and Find Full Text PDFMicrosc Res Tech
June 2024
A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
The nuclear export protein of the influenza A virus (NEP) is involved in many important processes of the virus life cycle. This makes it an attractive target for the treatment of a disease caused by a virus. Previously it has been shown, that recombinant variants of NEP are highly prone to aggregation in solution under various conditions with the formation of amyloid-like aggregates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!