Aims: Pulmonary hypertension (PH) is the main disease of pulmonary circulation. Alteration in calcium homeostasis in pulmonary artery smooth muscle cells (PASMCs) is recognized as a key feature in PH. The present study was undertaken to investigate the involvement of T-type voltage-gated calcium channels (T-VGCCs) in the control of the pulmonary vascular tone and thereby in the development of PH.

Methods And Results: Experiments were conducted in animals (rats and mice) kept 3-4 weeks in either normal (normoxic) or hypoxic environment (hypobaric chamber) to induce chronic hypoxia (CH) PH. In vivo, chronic treatment of CH rats with the T-VGCC blocker, TTA-A2, prevented PH and the associated vascular hyperreactivity, pulmonary arterial remodelling, and right cardiac hypertrophy. Deletion of the Cav3.1 gene (a T-VGCC isoform) protected mice from CH-PH. In vitro, patch-clamp and PCR experiments revealed the presence of T-VGCCs (mainly Cav3.1 and Cav3.2) in PASMCs. Mibefradil, NNC550396, and TTA-A2 inhibited, in a concentration-dependent manner, T-VGCC current, KCl-induced contraction, and PASMC proliferation.

Conclusion: The present study demonstrates that T-VGCCs contribute to intrapulmonary vascular reactivity and is implicated in the development of hypoxic PH. Specific blockers of T-VGCCs may thus prove useful for the therapeutic management of PH.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvu166DOI Listing

Publication Analysis

Top Keywords

calcium channels
8
pulmonary hypertension
8
pulmonary
6
t-type calcium
4
channels involved
4
involved hypoxic
4
hypoxic pulmonary
4
hypertension aims
4
aims pulmonary
4
hypertension main
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!