Inclined plate membrane bioreactors (ip-MBRs) have been proposed as a highly effective method in wastewater treatment. With the help of settling enhancer inclined plates, dense excess sludge can be kept in the mainstream of the process, and consequently, suitable sludge mass can be maintained in the membrane tank. In this study, the relationship among sludge retention time (SRT), bacterial communities, and hydrolytic enzyme activities was investigated. Two identical bench-scale ip-MBRs were operated 1 year in real municipal wastewater treatment. Multidimensional scaling (MDS) plots of terminal restriction fragment length polymorphism (T-RFLP) fingerprints showed similar changes in the bacterial communities in terms of bacterial members and abundance over time in both the reactors, which was primarily caused by the changes of wastewater composition. However, the impact of SRT revealed significant differences in the dominant bacterial communities when both the reactors were operated with a largely different SRT (infinite SRT and SRT of 20 days). The sequences of bacterial 16S rRNA gene were classified into six libraries of A-F. The largest group of sequences belonged to the phylum Proteobacteria. The phylum Bacteroidetes was dominant in the seed sludge retrieved from the conventional activated sludge (CAS) as Flavobacterium-like bacterium was dominantly observed. Under the MBR operation (libraries B-F), bacterial communities belonging to the phyla Proteobacteria and Chloroflexi were dominant. Most of them may be responsible for protein degradation because aminopeptidase activity increased in proportion with the abundance of these bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-014-5914-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!