Platinum nanoparticles supported on Ca(Mg)-ZSM-5 is an efficient, highly selective and stable catalyst for room-temperature oxidation of alcohols in water. Based on in situ EPR measurement and the radical trapping technique, we propose that the generation of ˙OH radicals by cleavage of the O-O bond in the H2O2 intermediate is the rate determining step, which participated in the abstraction of H from the α-C-H bond of alcohol molecules to produce aldehydes/ketones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cc02685c | DOI Listing |
J Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China. Electronic address:
Biomass-derived carbon, as an excellent support, has received extensive attention. In this work, carbon matrix obtained from bamboo fiber (BF) is served as a supporting material for the immobilization of platinum (Pt) nanoparticles, leading to a substantial improvement in the hydrogen evolution reaction (HER). This approach leverages the remarkable surface area, outstanding conductivity, and environmentally friendly characteristics of BF-derived carbon, facilitating the dispersion and stability of the Pt nanoparticles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Edinburgh, Edinburgh Cancer Research, Crewe Road South, Institute of Genetics and Cancer, EH4 2XR, Edinburgh, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Beyond their classical role as cytotoxics, Platinum (Pt) coordination complexes recently joined the selected group of transition metals capable of performing bioorthogonal reactions in living environments. To minimize their reactivity towards nucleophiles, which limit their catalytic performance, we investigated the use of Pt(0) with different forms, sizes and surface functionalization. We report herein the development of PEGylated Pt nanodendrites with the capacity to activate prodyes and prodrugs in cell culture and in vivo.
View Article and Find Full Text PDFDrug Deliv
December 2025
College of Pharmacy, Xinxiang Medical University, Xinxiang, China.
Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. Electronic address:
Acute kidney injury (AKI) is a common clinical syndrome characterized by the rapid loss of renal filtration function. No standard therapeutic agent option is currently available. The development and progression of AKI is a continuous and dynamical pathological process.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!