Liposomes are microscopic vesicles composed of one or more phospholipid bilayers separated by an equal number of aqueous interspaces. These "capsules" are formed when dried lipid is combined with excess water, agitated, and warmed above the transition temperature of the lipid (the temperature at which the lipid changes from a gel state to a fluid state). If a chemical in solution is present when the vesicles form, the chemical will be trapped in either the aqueous interspaces (hydrophilic compounds), or the lipid bilayer (hydrophobic compounds). The urinary bladder is an attractive site for the topical application of liposome encapsulated compounds due to its accessibility and since the introduction of various agents, including antineoplastic compounds, into the bladder is a well established treatment option. Utilization of liposome technology may provide the means for a more effective intravesical treatment of transitional cell carcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-5347(17)38771-2DOI Listing

Publication Analysis

Top Keywords

liposome encapsulated
8
transitional cell
8
cell carcinoma
8
aqueous interspaces
8
temperature lipid
8
encapsulated antineoplastic
4
antineoplastic agents
4
agents transitional
4
carcinoma tissue
4
tissue culture
4

Similar Publications

Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery.

Mol Pharm

January 2025

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.

Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing.

View Article and Find Full Text PDF
Article Synopsis
  • Colorectal cancer (CRC) is a major cause of cancer deaths, and oxaliplatin (OXA) is a primary treatment that faces challenges due to the tumor microenvironment (TME).
  • A new multifunctional nanosystem, Rg3-Lip-OXA/CaO, uses Ginsenoside Rg3 liposomes to target CRC cells, delivering OXA and calcium peroxide (CaO) together.
  • Research showed that this nanosystem had good stability and release properties, effectively targeted cancer cells, and significantly suppressed tumor growth in mice, while also showing manageable acute toxicity.
View Article and Find Full Text PDF

Future applications of cyclic antimicrobial peptides in drug delivery.

Expert Opin Drug Deliv

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, USA.

Introduction: Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes.

View Article and Find Full Text PDF

This study aimed to design a novel liposome containing GA modified phosphatidylcholine lipid (GA-PC Lip) and determine its susceptibility to tumor over-expressed secretory phospholipase A (sPLA) and its anti-cancer effect compared to conventional liposomes (Convention Lip). The liposomes were characterized for size, drug loading, encapsulation efficiency, and stability. A 6-CF release assay was conducted to assess the sensitivity of the liposomes to the tumor-overexpressed secretory phospholipase A (sPLA).

View Article and Find Full Text PDF

Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments.

Langmuir

January 2025

Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran.

Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!