Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dry eye is a symptomatic disease which affects a wide range of population and has a negative impact on their daily activities. Its diagnosis can be achieved by analyzing the interference patterns of the tear film lipid layer and by classifying them into one of the Guillon categories. The manual process done by experts is not only affected by subjective factors but is also very time consuming. In this paper we propose a general methodology to the automatic classification of tear film lipid layer, using color and texture information to characterize the image and feature selection methods to reduce the processing time. The adequacy of the proposed methodology was demonstrated since it achieves classification rates over 97% while maintaining robustness and provides unbiased results. Also, it can be applied in real time, and so allows important time savings for the experts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2013.2294732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!