This study investigated the effect of macrospora leaf spot (MLS), caused by Stenocarpella macrospora, on photosynthetic gas exchange parameters and chlorophyll a fluorescence parameters determined in leaves of plants from two maize cultivars ('ECVSCS155' and 'HIB 32R48H') susceptible and highly susceptible, respectively, to S. macrospora. MLS severity was significantly lower in the leaves of plants from ECVSCS155 relative to the leaves of plants from HIB 32R48H. In both cultivars, net CO2 assimilation rate, stomatal conductance, and transpiration rate significantly decreased, while the internal to ambient CO2 concentration ratio increased in inoculated plants relative to noninoculated plants. The initial fluorescence and nonphotochemical quenching significantly increased in inoculated plants of ECVSCS155 and HIB 32R48H, respectively, relative to noninoculated plants. The maximum fluorescence, maximum PSII quantum efficiency, coefficient for photochemical quenching, and electron transport rate significantly decreased in inoculated plants relative to noninoculated plants. For both cultivars, concentrations of total chlorophyll (Chl) (a+b) and carotenoids and the Chl a/b ratio significantly decreased in inoculated plants relative to noninoculated plants. In conclusion, the results from the present study demonstrate, for the first time, that photosynthesis in the leaves of maize plants is dramatically affected during the infection process of S. macrospora, and impacts are primarily associated with limitations of a diffusive and biochemical nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-04-14-0096-R | DOI Listing |
Sci Rep
December 2024
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India.
Heat stress and pathogens are two serious yield-limiting factors of crop plants. Plants that previously experienced high but sub-lethal temperatures become subsequently tolerant to higher temperatures through the development of acquired thermotolerance (ATT). ATT activation is associated with the elevated expression of heat shock (HS)-related genes such as HSFA2, HSFA3, and HSP101.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Entomology and Nematology, University of California, Davis, Davis, California, USA.
Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
Background And Objectives: Plant growth-promoting rhizobacteria (PGPR) with a diverse set of traits can improve crop yield in agriculture. The current study aimed to evaluate the potential of multi-trait PGPR isolates as inoculants for maize growth.
Materials And Methods: In this study, 23 bacterial isolates were initially screened from maize plant rhizosphere.
BMC Vet Res
December 2024
Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Background: The Protozoan pathogen Eimeria is a significant issue in poultry production. Scientists are concerned with finding alternative strategies due to the spread of resistance against the commonly employed coccidiostats. This study examined how well myrrh extract (MyE) protected domesticated pigeons from an experimental Eimeria labbeana-like infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!