The present study reports comparative genomics and proteomics of Staphylococcus epidermidis (SE) strains isolated from bovine intramammary infection (PM221) and human hosts (ATCC12228 and RP62A). Genome-level profiling and protein expression analyses revealed that the bovine strain and the mildly infectious ATCC12228 strain are highly similar. Their genomes share high sequence identity and synteny, and both were predicted to encode the commensal-associated fdr marker gene. In contrast, PM221 was judged to differ from the sepsis-associated virulent human RP62A strain on the basis of distinct protein expression patterns and overall lack of genome synteny. The 2D DIGE and phenotypic analyses suggest that PM221 and ATCC12228 coordinate the TCA cycle activity and the formation of small colony variants in a way that could result in increased viability. Pilot experimental infection studies indicated that although ATCC12228 was able to infect a bovine host, the PM221 strain caused more severe clinical signs. Further investigation revealed strain- and condition-specific differences among surface bound proteins with likely roles in adhesion, biofilm formation, and immunomodulatory functions. Thus, our findings revealed a close link between the bovine and commensal-type human strains and suggest that humans could act as a reservoir of bovine mastitis-causing SE strains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr500322dDOI Listing

Publication Analysis

Top Keywords

genomics proteomics
8
staphylococcus epidermidis
8
epidermidis strains
8
protein expression
8
bovine
5
proteomics provide
4
provide insight
4
insight commensal
4
commensal pathogenic
4
pathogenic lifestyles
4

Similar Publications

People living with HIV are at higher risk of heart failure and associated left atrial remodeling compared to people without HIV. Mechanisms are unclear but have been linked to inflammation and premature aging. Here we obtain plasma proteomics concurrently with cardiac magnetic resonance imaging in two independent study populations to identify parallels between HIV-related and aging-related immune dysfunction that could contribute to atrial remodeling and clinical heart failure.

View Article and Find Full Text PDF

Enhanced nano-LC-MS for analyzing dansylated oral cancer tissue metabolome dissolved in solvents with high elution strength.

Anal Chim Acta

February 2025

Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, 333, Taiwan; Clinical Proteomics Core Laboratory, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan. Electronic address:

Background: Tissue metabolomics analysis, alongside genomics and proteomics, offers crucial insights into the regulatory mechanisms of tumorigenesis. To enhance metabolite detection sensitivity, chemical isotope labeling (CIL) techniques, such as dansylation, have been developed to improve metabolite separation and ionization in mass spectrometry (MS). However, the dissolution of hydrophobic derivatized metabolites in solvents with high acetonitrile content limits the use of liquid chromatography (LC) systems with small-volume reversed-phase (RP) columns.

View Article and Find Full Text PDF

Background: Chemical derivatization is a common technique in liquid chromatography-mass spectrometry (LC-MS) metabolomics used to improve the ionizability and chromatographic properties of metabolites in complex biological samples. This process facilitates better detection and separation of a wide array of compounds. The reagent 2-(4-boronobenzyl) isoquinolin-2-ium bromide (BBII), developed as a glucose labeling reagent for matrix-assisted laser desorption/ionization MS, enhances ionization for glucose and other hydroxyl metabolites.

View Article and Find Full Text PDF

Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.

View Article and Find Full Text PDF

Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.

Biophys Rep (N Y)

January 2025

UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA,; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.

Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!