A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic connectivity at rest predicts attention task performance. | LitMetric

Consistent spatial patterns of coherent activity, representing large-scale networks, have been reliably identified in multiple populations. Most often, these studies have examined "stationary" connectivity. However, there is a growing recognition that there is a wealth of information in the time-varying dynamics of networks which has neural underpinnings, which changes with age and disease and that supports behavior. Using factor analysis of overlapping sliding windows across 25 participants with Parkinson disease (PD) and 21 controls (ages 41-86), we identify factors describing the covarying correlations of regions (dynamic connectivity) within attention networks and the default mode network, during two baseline resting-state and task runs. Cortical regions that support attention networks are affected early in PD, motivating the potential utility of dynamic connectivity as a sensitive way to characterize physiological disruption to these networks. We show that measures of dynamic connectivity are more reliable than comparable measures of stationary connectivity. Factors in the dorsal attention network (DAN) and fronto-parietal task control network, obtained at rest, are consistently related to the alerting and orienting reaction time effects in the subsequent Attention Network Task. In addition, the same relationship between the same DAN factor and the alerting effect was present during tasks. Although reliable, dynamic connectivity was not invariant, and changes between factor scores across sessions were related to changes in accuracy. In summary, patterns of time-varying correlations among nodes in an intrinsic network have a stability that has functional relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313397PMC
http://dx.doi.org/10.1089/brain.2014.0248DOI Listing

Publication Analysis

Top Keywords

dynamic connectivity
20
attention networks
8
attention network
8
connectivity
6
dynamic
5
attention
5
networks
5
network
5
connectivity rest
4
rest predicts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!