Superparamagnetic Ni nanoparticles with diameters of about 3 nm are formed in situ at room temperature in a polysilazane matrix, forming Ni/polysilazane nanocomposite, in the reaction between a polysilazane and trans-bis(aceto-kO)bis(2-aminoethanol-k(2)N,O)nickel(II). The thermolysis of the Ni/polysilazane nanocomposite at 700 °C in an argon atmosphere results in a microporous superparamagnetic Ni/silicon oxycarbonitride (Ni/SiCNO) ceramic nanocomposite. The growth of Ni nanoparticles in Ni/SiCNO ceramic nanocomposite is totally suppressed even after thermolysis at 700 °C, as confirmed by HRTEM and SQUID characterizations. The analysis of saturation magnetization of Ni nanoparticles in Ni/polysilazane and Ni/SiCNO nanocomposites indicates that the saturation magnetization of Ni nanoparticles is higher than expected values and infers that the surfaces of Ni nanoparticles are not oxidized. The microporous superparamagnetic Ni/SiCNO nanocomposite is shaped as a free-standing monolith and foam. In addition, Ni/SiCNO membranes are fabricated by the dip-coating of a tubular alumina substrate in a dispersion of Ni/polysilazane in THF followed by a thermolysis at 700 °C under an argon atmosphere. The gas separation performance of Ni/SiCNO membranes at 25 and 300 °C is assessed by the single gas permeance (pressure rise technique) using He, H2, CO2, N2, CH4, n-propene, n-propane, n-butene, n-butane, and SF6 as probe molecules. After hydrothermal treatment, the higher increase in the hydrogen permeance compared to the permeance of other gases as a function of temperature indicates that the hydrogen affinity of Ni nanoparticles influences the transport of hydrogen in the Ni/SiCNO membrane and Ni nanoparticles stabilize the structure against hydrothermal corrosion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am501892z | DOI Listing |
Int J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, FeO was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl and FeCl was 1.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha, 410114, Hunan Province, China.
This paper presents a method of rotor position estimation for switched reluctance motors suitable for saturation. The effects of saturation as well as voltage changes are taken into account at the same time. It is based on the inductance in the unsaturated region.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Purpose: Proton exchange rate (K) is a valuable biophysical metric. K MRI may augment conventional structural MRI by revealing brain impairments at the molecular level. This study aimed to investigate the feasibility of K MRI in evaluating brain injuries at multiple epilepsy stages.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Nanjing University, Hankou Road 22, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, CHINA.
Driven by the miniaturization of microelectronic devices and their multifunctionalities, the development of new quadruple-perovskite oxides with high dielectric constants and high Curie temperature are highly required. Herein, we report on the structural, dielectric and magnetic properties of Sb/Cr-doped CaCu3Ti4O12 (CCTO) quadruple perovskite oxides, CaCu3Ti3.9Sb0.
View Article and Find Full Text PDFIn Vivo
December 2024
School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia.
Background/aim: Tumors exhibit impaired blood flow and hypoxic areas, which can reduce the effectiveness of treatments. Characterizing these tumor features can inform treatment decisions, including the use of vasculature modulation therapies. Imaging provides insight into these characteristics, with techniques varying between clinical and preclinical settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!