Novel coupling between TRPC-like and KNa channels modulates low threshold spike-induced afterpotentials in rat thalamic midline neurons.

Neuropharmacology

Neuroscience Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada. Electronic address:

Published: November 2014

Neurons in thalamic midline and paraventricular nuclei (PVT) display a unique slow afterhyperpolarizing potential (sAHP) following the low threshold spike (LTS) generated by activation of their low voltage Ca(2+) channels. We evaluated the conductances underlying this sAHP using whole-cell patch-clamp recordings in rat brain slice preparations. Initial observations recorded in the presence of TTX revealed a marked dependency of the LTS-induced sAHP on extracellular Na(+): replacing Na(+) with TRIS(+) in the external medium eliminated the LTS-induced sAHP; substitution of Na(+) with either Li(+) or choline(+) in the external medium resulted in a gradual loss of the sAHP and its replacement with a prolonged slow afterdepolarizing potential (sADP). The LTS-induced sAHP was reduced by quinidine and potentiated by loxapine, suggesting involvement of KNa-like channels. Canonical transient receptor potential (TRPC) channels were considered the source for Na(+) based on observations that the sAHP was suppressed by nonselective TRPC channel blockers (2-APB, flufenamic acid and ML204) but unchanged in the presence of TRPV1 channel blocker (SB-366791). In addition, after replacement of Na(+) with Li(+), the isolated LTS-induced sADP was significantly suppressed in the presence of 2-APB or ML204, after replacement of extracellular Ca(2+) with Sr(2+), and by intracellular Ca(2+) chelation with EGTA, data that collectively suggest involvement of Ca(2+)-activated TRPC-like conductances containing TRPC4/5 subunits. The isolated LTS-induced sADP also exhibited a strong voltage dependency, decreasing at hyperpolarizing potentials, further support for involvement of TRPC4/5 subunits. This sADP exhibited neurotransmitter receptor sensitivity, with suppression by 5-CT, a 5-HT7 receptor agonist, and enhancement by the neuropeptide orexin A. These data suggest that LTS-induced slow afterpotentials reflect a simultaneous interplay between KNa and TRPC-like conductances, novel for midline thalamic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2014.06.023DOI Listing

Publication Analysis

Top Keywords

lts-induced sahp
12
low threshold
8
thalamic midline
8
external medium
8
na+ li+
8
isolated lts-induced
8
lts-induced sadp
8
trpc-like conductances
8
trpc4/5 subunits
8
sadp exhibited
8

Similar Publications

Novel coupling between TRPC-like and KNa channels modulates low threshold spike-induced afterpotentials in rat thalamic midline neurons.

Neuropharmacology

November 2014

Neuroscience Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada. Electronic address:

Neurons in thalamic midline and paraventricular nuclei (PVT) display a unique slow afterhyperpolarizing potential (sAHP) following the low threshold spike (LTS) generated by activation of their low voltage Ca(2+) channels. We evaluated the conductances underlying this sAHP using whole-cell patch-clamp recordings in rat brain slice preparations. Initial observations recorded in the presence of TTX revealed a marked dependency of the LTS-induced sAHP on extracellular Na(+): replacing Na(+) with TRIS(+) in the external medium eliminated the LTS-induced sAHP; substitution of Na(+) with either Li(+) or choline(+) in the external medium resulted in a gradual loss of the sAHP and its replacement with a prolonged slow afterdepolarizing potential (sADP).

View Article and Find Full Text PDF

Burst firing mediated by a low-threshold spike (LTS) is the hallmark of many thalamic neurons. However, postburst afterhyperpolarizations (AHPs) are relatively uncommon in thalamus. We now report data from patch-clamp recordings in rat brain slice preparations that reveal an LTS-induced slow AHP (sAHP) in thalamic paraventricular (PVT) and other midline neurons, but not in ventrobasal or reticular thalamic neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!