Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074966 | PMC |
http://dx.doi.org/10.1155/2014/310504 | DOI Listing |
Cells
February 2025
Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Jeonbuk-do, Republic of Korea.
Insulin resistance (IR) disrupts hepatic glucose metabolism and mitochondrial function, which contributes to metabolic disorders. The present study examined the effects of tomatine on glucose metabolism in high-glucose-induced IR hepatocytes and explored its underlying mechanisms using AML12 and HepG2 cell models. The results showed that tomatine did not exhibit cytotoxic effects.
View Article and Find Full Text PDFFood Chem X
February 2025
Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland.
Blackcurrant press cake (BPC) anthocyanins were recovered using ultrasound-assisted extraction, and the optimal BPC extract was tested for its antioxidant capacity using chemical and biological assays and applied in a functional food model. Extraction at 400 W for 10 min followed by freeze-drying rendered an extract rich in polyphenols (47.83 mg GAE/g), where delphinidin-3-rutinoside, delphinidin-3-glucoside, cyanidin-3-rutinoside, and cyanidin-3-glucoside accounted for 75 % of total phenolics.
View Article and Find Full Text PDFBalkan J Med Genet
December 2024
University Ss Cyril and Methodius in Skopje, Faculty of Pharmacy, Institute of pharmaceutical chemistry, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia.
Clopidogrel, a P2Y12 receptor antagonist, is widely used to prevent cardiovascular events, but significant variability in its efficacy persists among patients. AKR1D1, involved in bile acid synthesis and regulation of CYP enzymes, may contribute to this variability. This study aims to investigate whether clopidogrel and its inactive metabolite, 2-oxoclopidogrel, interact with AKR1D1 at the enzymatic or transcriptional level.
View Article and Find Full Text PDFActa Pharmacol Sin
March 2025
Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
Patients with hepatocellular carcinoma (HCC) at advanced stages face limited treatment options, highlighting the urgent need for more effective early detection methods and advanced therapeutic modalities. Emerging evidence shows that multiple CYP450 proteins are involved in the pathogenesis of HCC. CYP1A2, CYP2E1 and CYP3A5 have been shown to modulate important signaling pathways, hereby inhibiting the proliferation and invasion of HCC cells.
View Article and Find Full Text PDFMelatonin, also known as the pineal hormone, is secreted by the pineal gland and primarily regulates circadian rhythms. Additionally, it possesses immunomodulatory properties and anticancer effects. However, its specific mechanism in hepatocellular carcinoma (HCC) remains unclear, particularly regarding its effect on HCC-mediated immune escape through PD-L1 expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!