VGF is a protein expressed by neurons and processed into several peptides. It plays a role in energy homeostasis and promotes growth and survival. Recently, VGF mRNA was detected in peripheral leukocytes. Since it is known that aging is associated with a decrease in the development and function of neuronal as well as immune cells, we addressed the question whether a peripheral expression of VGF by CD3+ T cells and CD56+ NK cells is correlated with age. Therefore, the frequency of VGF+CD3+ and VGF+CD56+ cells was determined in mentally healthy volunteers aged between 22 and 88. We found an age-dependent increase in the number of VGF+CD3+ T cells that correlated with HbA1c and the body mass index (BMI). VGF-expression by NK cells was age-independent. Blockade of VGF reduced proliferation and secretion of cytokines such as IL-2, IL-17A, IL-1β, IL-10 and TNF by CD3+ T cells and PBMCs. Rapamycin-mediated T cell blockade significantly reduced the frequency of VGF-expressing T cells. We conclude that VGF contributes to survival and function of peripheral T cells. The age-dependent increase in VGF-expression could serve as mechanism that counterregulates the decrease in functionality of T lymphocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100807PMC
http://dx.doi.org/10.18632/aging.100656DOI Listing

Publication Analysis

Top Keywords

cells
9
increase vgf-expression
8
cd3+ cells
8
cells correlated
8
age-dependent increase
8
vgf
5
age-related increase
4
vgf-expression lymphocytes
4
lymphocytes vgf
4
vgf protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!