Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that recognizes mRNAs with premature stop codons and targets them for rapid degradation. Evidence from previous studies has converged on UPF1 as the central NMD factor. In human cells, the SMG1 kinase phosphorylates UPF1 at the N-terminal and C-terminal tails, in turn allowing the recruitment of the NMD factors SMG5, SMG6 and SMG7. To understand the molecular mechanisms, we recapitulated these steps of NMD in vitro using purified components. We find that a short C-terminal segment of phosphorylated UPF1 containing the last two Ser-Gln motifs is recognized by the heterodimer of SMG5 and SMG7 14-3-3-like proteins. In contrast, the SMG6 14-3-3-like domain is a monomer. The crystal structure indicates that the phosphoserine binding site of the SMG6 14-3-3-like domain is similar to that of SMG5 and can mediate a weak phospho-dependent interaction with UPF1. The dominant SMG6-UPF1 interaction is mediated by a low-complexity region bordering the 14-3-3-like domain of SMG6 and by the helicase domain and C-terminal tail of UPF1. This interaction is phosphorylation independent. Our study demonstrates that SMG5-SMG7 and SMG6 exhibit different and non-overlapping modes of UPF1 recognition, thus pointing at distinguished roles in integrating the complex NMD interaction network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132714 | PMC |
http://dx.doi.org/10.1093/nar/gku578 | DOI Listing |
Plants (Basel)
February 2024
School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
Calcium-mediated signaling pathways are known to play important roles in the polar growth of pollen tubes. The calcium-dependent protein kinase, PiCDPK1, has been shown to be involved in regulating this process through interaction with a guanine dissociation inhibitor, PiRhoGDI1. To more fully understand the role of PiCDPK1 in pollen tube extension, we designed a pull-down study to identify additional substrates of this kinase.
View Article and Find Full Text PDFPlant Physiol Biochem
June 2020
Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India. Electronic address:
Global warming has reached an alarming situation, which led to a dangerous climatic condition. The irregular rainfalls and land degradation are the significant consequences of these climatic changes causing a decrease in crop productivity. The effect of drought and its tolerance mechanism, a comparative roots proteomic analysis of chickpea seedlings grown under hydroponic conditions for three weeks, performed at different time points using 2-Dimensional gel electrophoresis (2-DE).
View Article and Find Full Text PDFSci Rep
September 2019
Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
The 14-3-3-related protein SMG7 plays critical roles in regulation of DNA damage response and nonsense-mediated mRNA decay (NMD). Like 14-3-3, SMG7 engages phosphoserine-dependent protein interactions; however, the precise role of phosphorylation-mediated SMG7 binding remains unknown. Here, we show that DNA damage-induced SMG7-p53 binding requires phosphorylated Ser15 on p53, and that substitution of the conserved lysine residue K66 in the SMG7 14-3-3-like domain with the glutamic acid (E) abolishes interactions with its client proteins p53 and UPF1.
View Article and Find Full Text PDFNucleic Acids Res
August 2014
Max Planck Institute of Biochemistry, Structural Cell Biology Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that recognizes mRNAs with premature stop codons and targets them for rapid degradation. Evidence from previous studies has converged on UPF1 as the central NMD factor. In human cells, the SMG1 kinase phosphorylates UPF1 at the N-terminal and C-terminal tails, in turn allowing the recruitment of the NMD factors SMG5, SMG6 and SMG7.
View Article and Find Full Text PDFG3 (Bethesda)
October 2013
St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.
During its natural life cycle, budding yeast (Saccharomyces cerevisiae) has to adapt to drastically changing environments, but how environmental-sensing pathways are linked to adaptive gene expression changes remains incompletely understood. Here, we describe two closely related yeast hEST1A-B (SMG5-6)-like proteins termed Esl1 and Esl2 that contain a 14-3-3-like domain and a putative PilT N-terminus ribonuclease domain. We found that, unlike their metazoan orthologs, Esl1 and Esl2 were not involved in nonsense-mediated mRNA decay or telomere maintenance pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!