Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1255925 | DOI Listing |
Adv Sci (Weinh)
January 2025
Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Condensed Matter Physics, GdS Optronlab, LUCIA Building, University of Valladolid Paseo de Belén 19 47011 Valladolid Spain.
Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.
View Article and Find Full Text PDFNanoscale
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Photonic crystals (PC) play a key role in optical field modulation due to their unique photonic band gaps (PBGs). Anodic aluminum oxide (AAO) prepared by pulse anodization is a promising candidate for PC devices. In this research, an AAO-based PC with multi-band was fabricated on a single-slice & single-material film, which exhibits multi-band responses in the visible-to-near-infrared (vis-NIR) region.
View Article and Find Full Text PDFLuminescence
January 2025
Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, Lviv, Ukraine.
Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.
View Article and Find Full Text PDFAdv Mater
January 2025
Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
Research on manipulating materials using light has garnered significant interest, yet examples of controlling electronic polarization in magnetic materials remain scarce. Here, the hysteresis of electronic polarization in the anti-ferromagnetic semiconductor FePS is demonstrated via light. Below the Néel temperature, linear dichroism (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!