Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calmodulin (CaM)-dependent eukaryotic elongation factor 2 kinase (eEF-2K) impedes protein synthesis through phosphorylation of eukaryotic elongation factor 2 (eEF-2). It is subject to complex regulation by multiple upstream signaling pathways, through poorly described mechanisms. Precise integration of these signals is critical for eEF-2K to appropriately regulate protein translation rates. Here, an allosteric mechanism comprising two sequential conformations is described for eEF-2K activation. First, Ca(2+)/CaM binds eEF-2K with high affinity (Kd(CaM)(app) = 24 ± 5 nm) to enhance its ability to autophosphorylate Thr-348 in the regulatory loop (R-loop) by > 10(4)-fold (k(auto) = 2.6 ± 0.3 s(-1)). Subsequent binding of phospho-Thr-348 to a conserved basic pocket in the kinase domain potentially drives a conformational transition of the R-loop, which is essential for efficient substrate phosphorylation. Ca(2+)/CaM binding activates autophosphorylated eEF-2K by allosterically enhancing k(cat)(app) for peptide substrate phosphorylation by 10(3)-fold. Thr-348 autophosphorylation results in a 25-fold increase in the specificity constant (k(cat)(app)/K(m)(Pep-S) (app)), with equal contributions from k(cat)(app) and K(m)(Pep-S)(app), suggesting that peptide substrate binding is partly impeded in the unphosphorylated enzyme. In cells, Thr-348 autophosphorylation appears to control the catalytic output of active eEF-2K, contributing more than 5-fold to its ability to promote eEF-2 phosphorylation. Fundamentally, eEF-2K activation appears to be analogous to an amplifier, where output volume may be controlled by either toggling the power switch (switching on the kinase) or altering the volume control (modulating stability of the active R-loop conformation). Because upstream signaling events have the potential to modulate either allosteric step, this mechanism allows for exquisite control of eEF-2K output.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156036 | PMC |
http://dx.doi.org/10.1074/jbc.M114.577148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!