GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145132 | PMC |
http://dx.doi.org/10.1105/tpc.114.125880 | DOI Listing |
Plants (Basel)
April 2024
Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey.
Plant roots exert hydrotropism in response to moisture gradients to avoid drought stress. The regulatory mechanism underlying hydrotropism involves novel regulators such as MIZ1 and GNOM/MIZ2 as well as abscisic acid (ABA), reactive oxygen species (ROS), and Ca signaling. ABA, ROS, and Ca signaling are also involved in plant responses to drought stress.
View Article and Find Full Text PDFElife
February 2024
Institute of Science and Technology Austria, Klosterneuburg, Austria.
The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive.
View Article and Find Full Text PDFClin Nutr ESPEN
February 2024
Department of Nutrition and Dietetics, Sarab Branch, Islamic Azad University, Sarab, Iran. Electronic address:
Chronic obstructivе pulmonary disеasе (COPD), a rеspiratory disеasе, is influenced by a combination of gеnеtic and еnvironmеntal factors. Thе fiеld of nutrigеnomics, which studiеs thе intеrplay bеtwееn diеt and gеnеs, provides valuable insights into thе gеnomic landscapе of COPD and its implications for production and managеmеnt. This rеviеw providеs a comprеhеnsivе ovеrviеw of thе gеnеtic aspеcts of COPD and thе rolе of nutrigеnomics in advancing our undеrstanding of thе undеrlying mеchanisms.
View Article and Find Full Text PDFPlant Physiol
January 2024
Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
Polarity of plasma membrane proteins is essential for cell morphogenesis and control of cell division and, thus, influences organ and whole plant development. In Arabidopsis (Arabidopsis thaliana) root endodermal cells, 2 transmembrane kinases, INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) and KINASE ON THE INSIDE (KOIN), accumulate at opposite lateral domains. Their polarization is tightly linked to their activities regulating cell division and ground tissue patterning.
View Article and Find Full Text PDFJ Exp Bot
September 2023
Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
This article comments on: Pang L, Kobayashi A, Atsumi Y, Miyazawa Y, Fujii N, Dietrich D, Bennett MJ, Takahashi H. 2023. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 control not only positive hydrotropism but also phototropism in Arabidopsis roots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!