In the present study, we investigated the apoptotic effects of isosclerone from marine-derived fungi on human breast cancer MCF-7 cells. Treatment with isosclerone exhibited a characteristic feature of apoptosis including significant cytotoxicity and DNA fragmentation in cancer cells. In addition, The apoptosis induction abilities of the isosclerone was studied by analyzing the expression of caspase-3, -8 and -9, Bcl-2 family, NF-κ-B P50, P65, and IKK proteins. Western blot and RT-PCR analysis have indicated that isosclerone induce cancer cells apoptosis through down-regulated Bcl-2 family and up-regulated caspases, and activating the NF-κ-B signaling pathway. Our data demonstrate that isosclerone specifically binds to crystal structure of apoptosis regulator BCL-2 and pseudo-activated procaspase-3 proteins through down-regulated Bcl-2 family and up-regulated caspases, and activating the NF-κ-B signaling pathway. Our proof-of-principle study should have a positive impact on future drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2014.06.042 | DOI Listing |
Annu Rev Pathol
January 2025
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; email:
Since its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death.
View Article and Find Full Text PDFAm J Stem Cells
December 2024
Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences Khorramabad, Iran.
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea. Electronic address:
Interferon regulatory factor 2 (IRF2) is a member of the IRF family that is specifically involved in diverse immune responses via interferon (IFN)/IRF-dependent signaling pathways. In this study, IRF2 of Epinephelus akaara (EAIRF2) was identified and characterized by evaluating its structural and functional properties. EAIRF2 showed the highest homology with IRF2 of Epinephelus coioides and clustered with teleosts in the phylogenetic tree.
View Article and Find Full Text PDFExp Dermatol
January 2025
Department of Dermatology, Ajou University School of Medicine; Suwon, Suwon, Korea.
Senescent melanocytes have been suggested to play a role in the development of ageing-associated pigmentary changes and skin ageing. Here, we assessed the senolytic capacity of recognised senolytic chemicals and natural compounds in UV-irradiated senescent melanocytes. Among the tested agents, only ABT-737 and ABT-263 showed a significant reduction in the number of SA-β-Gal-positive senescent melanocytes and in the expressions of p16 and p21.
View Article and Find Full Text PDFJ Biol Methods
December 2024
National Center for Scientific Research UMR 8003, Paris City University, SSPIN Neuroscience Institute, Saint-Germain Campus, Paris, Île de France 75006, France.
Background: HA14-1 is a small-molecule, stable B-cell lymphoma 2 (Bcl-2) antagonist that promotes apoptosis in malignant cells through an incompletely-defined mechanism of action. Bcl-2 and related anti-apoptotic proteins, such as B-cell lymphoma-extra-large [Bcl-XL]), are predominantly localized to the outer mitochondrial membrane, where they regulate cell death pathways. However, the notably short half-life of HA14-1 limits its potential therapeutic application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!