Capsules with a hierarchical shell structure assembled by aminoglycosides and DNA via the kinetic path.

Chem Commun (Camb)

Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.

Published: August 2014

Aminoglycosides are capable of expelling water molecules when forming a complex with DNA via electrostatic interaction. The "water-proof" nature of the complex leads to the formation of capsules, which possess hierarchical shell structures with a smooth and rigid outer layer and a viscoelastic inner layer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc03508aDOI Listing

Publication Analysis

Top Keywords

hierarchical shell
8
capsules hierarchical
4
shell structure
4
structure assembled
4
assembled aminoglycosides
4
aminoglycosides dna
4
dna kinetic
4
kinetic path
4
path aminoglycosides
4
aminoglycosides capable
4

Similar Publications

The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time.

View Article and Find Full Text PDF

Biomimetic Nanostructure Engineering of Ultralow Ir-Loading Electrocatalysts for Oxygen Reduction Reaction.

Inorg Chem

January 2025

Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.

Promoting the rate of the oxygen reduction reaction (ORR) is critical for boosting the overall energy efficiency of the flexible zinc-air batteries (FZABs). Inspired by nature, we designed "branch-leaf" like hierarchical porous carbon nanofibers with ultralow loadings of Ir nanoparticles (NPs) derived from covalent-organic framework/metal-organic framework (COF/MOF) core-shell hybrids. The as-obtained Ir/FeZn-hierarchical porous carbon nanofibers (HPCNFs) showcase enhanced ORR performance, and the ultralow Ir loading reduces the cost while maintaining catalytic capacity.

View Article and Find Full Text PDF

Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs.

ACS Sens

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.

View Article and Find Full Text PDF

Supercooled Liquids in a Core-Shell Coordination Structure for Practical Long-Term Energy Storage.

Adv Mater

January 2025

Department of Materials Science and Engineering, Institute of Innovative Materials (I2, M), Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Rd., Shenzhen, Guangdong, 518055, China.

Mutual acquisition of phase-stability and controllable phase-transition becomes a predominant criterion of phase-change materials for the practical long-term energy storage but seems contradictory always. Here a strategy combining coordination and hydrogen bonds hierarchically to create a supercooled liquid in a core-shell coordination structure is reported, addressing that demand successfully. This new material is composed of a Mn-methylurea complex (MM) core and the hierarchically bonded erythritols shell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!