Major challenges in the development of drug delivery systems (DDSs) have been the short half-life, poor bioavailability, insufficient accumulation and penetration of the DDSs into the tumor tissue. Understanding the pharmacokinetic (PK) parameters of the DDS is essential to overcome these challenges. Herein we investigate how surface chemistry affects the PK profile and organ distribution of a gold nanoparticle-based DDS containing both a passive and active targeting moiety via two common routes of administration: intravenous and intraperitoneal injections. Using LC/MS/MS, ELISA and INAA we report the half-life, peak plasma concentrations, area under the curve, ability to cross the peritoneal barrier and biodistribution of the nanoconjugates. The results highlight the design criteria for fine-tuning the PK parameters of a targeted drug delivery system that exploits the benefits of both active and passive targeting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092331PMC
http://dx.doi.org/10.1038/srep05669DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
targeted drug
8
delivery system
8
passive targeting
8
tuning pharmacokinetics
4
pharmacokinetics biodistribution
4
biodistribution targeted
4
system incorporation
4
incorporation passive
4
targeting component
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!